An Alternative Proof of a Strip Estimate for First-Order System Least-Squares for Interface Problems

被引:0
|
作者
Bertrand, Fleurianne [1 ]
机构
[1] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
来源
关键词
FINITE-ELEMENT METHODS;
D O I
10.1007/978-3-319-73441-5_9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this paper is an alternative proof of a strip estimate, used in Least-Squares methods for interface problems, as in [4] for a two-phase flow problem with incompressible flow in the subdomains. The Stokes flow problems in the subdomains are treated as first-order systems and a combination of H(div)-conforming Raviart-Thomas and standard H-1-conforming elements were used for the discretization. The interface condition is built directly in the H(div)-conforming space. Using the strip estimate, the homogeneous Least-Squares functional is shown to be equivalent to an appropriate norm allowing the use of standard finite element approximation estimates.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 50 条
  • [31] A First-Order System Least-Squares Finite Element Method for the Poisson-Boltzmann Equation
    Bond, Stephen D.
    Chaudhry, Jehanzeb Hameed
    Cyr, Eric C.
    Olson, Luke N.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (08) : 1625 - 1635
  • [32] An analysis for the compressible stokes equations by first-order system of least-squares finite element method
    Kim, SD
    Lee, E
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2001, 17 (06) : 689 - 699
  • [33] ERROR ANALYSIS FOR CONSTRAINED FIRST-ORDER SYSTEM LEAST-SQUARES FINITE-ELEMENT METHODS
    Adler, J. H.
    Vassilevski, P. S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03): : A1071 - A1088
  • [34] AN ALTERNATIVE PROOF FOR THE STABILITY OF LEAST-SQUARES INVERSE POLYNOMIALS
    SCHMEISSER, G
    RAGHURAMIREDDY, D
    UNBEHAUEN, R
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (08): : 822 - 824
  • [35] FINITE ELEMENT APPROXIMATION OF THE DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC PROBLEMS
    Shin, Byeong Chun
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (03): : 563 - 578
  • [36] First-order system least squares (FOSLS) for coupled fluid-elastic problems
    Heys, JJ
    Manteuffel, TA
    McCormick, SF
    Ruge, JW
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) : 560 - 575
  • [37] A posteriori error estimators for the first-order least-squares finite element method
    Ku, JaEun
    Park, Eun-Jae
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (01) : 293 - 300
  • [38] On least-squares estimation of the residual variance in the first-order moving average model
    Mentz, RP
    Morettin, PA
    Toloi, CMC
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 29 (04) : 485 - 499
  • [39] On first-order formulations of the least-squares finite element method for incompressible flows
    Ding, X
    Tsang, TTH
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2003, 17 (03) : 183 - 197
  • [40] FIRST-ORDER SYSTEM LEAST SQUARES FOR INCOMPRESSIBLE RESISTIVE MAGNETOHYDRODYNAMICS
    Adler, J. H.
    Manteuffel, T. A.
    McCormick, S. F.
    Ruge, J. W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 229 - 248