Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells

被引:220
作者
Kumar, G. Gnana [1 ]
Sarathi, V. G. Sathiya [1 ]
Nahm, Kee Suk [2 ,3 ]
机构
[1] Madurai Kamaraj Univ, Sch Chem, Dept Phys Chem, Madurai 625021, Tamil Nadu, India
[2] Chonbuk Natl Univ, Sch Chem Engn, Jeonju 561756, South Korea
[3] Chonbuk Natl Univ, Dept Energy Storage & Convers Engn, Jeonju 561756, South Korea
关键词
Bio film; Charge transfer; Compatibility; Conductivity; Resistance; Surface area; POWER-GENERATION; ELECTRICITY-GENERATION; CARBON NANOTUBES; WASTE-WATER; ELECTRON-TRANSFER; CONDUCTIVE POLYMERS; FED-BATCH; PERFORMANCE; CATHODE; ENERGY;
D O I
10.1016/j.bios.2012.12.048
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Microbial fuel cells (MFC), the ergonomic technology connects the liaison of fuel cell architecture and biological resources. Many viable applications like wastewater treatment, biosensors and bioremediation can be made possible with the help of MFCs. This technology is still at its toddler stage and immense works are still in progress to increase the volumetric energy density of MFCs. The overall performance of MFC depends on the cardinal part of the system; anode. A number of anode materials are currently in research to adjudge the better one in terms of the startup time, power output and durability. A wide range of possibilities are now currently available in the fabrication and modification of anode materials to substantially increase the power performances. This review adumbrates the significant requirements of anodes that are essential to be fulfilled, encompasses the aspiring research efforts which have been devoted so far in the anode modification and fabrication strategies to increase the power output, durability and compatibility of the anode interface with the inoculated microorganisms. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:461 / 475
页数:15
相关论文
共 107 条
[1]   Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes [J].
Aelterman, Peter ;
Versichele, Mathias ;
Marzorati, Massimo ;
Boon, Nico ;
Verstraete, Willy .
BIORESOURCE TECHNOLOGY, 2008, 99 (18) :8895-8902
[2]   Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures [J].
Ahn, Youngho ;
Logan, Bruce E. .
BIORESOURCE TECHNOLOGY, 2010, 101 (02) :469-475
[3]  
[Anonymous], 2003, ANGEW CHEM, DOI DOI 10.1002/ange.200350918
[4]  
Bailey S., 2003, Handbook of Photovoltaic Science and Engineering
[5]   Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode [J].
Behera, Manaswini ;
Jana, Partha S. ;
Ghangrekar, M. M. .
BIORESOURCE TECHNOLOGY, 2010, 101 (04) :1183-1189
[6]  
Benetton XD, 2010, J NEW MAT ELECTR SYS, V13, P1
[7]   THE SUCROSE FUEL-CELL - EFFICIENT BIOMASS CONVERSION USING A MICROBIAL CATALYST [J].
BENNETTO, HP ;
DELANEY, GM ;
MASON, JR ;
ROLLER, SD ;
STIRLING, JL ;
THURSTON, CF .
BIOTECHNOLOGY LETTERS, 1985, 7 (10) :699-704
[8]   Diversifying biological fuel cell designs by use of nanoporous filters [J].
Biffinger, Justin C. ;
Ray, Ricky ;
Little, Brenda ;
Ringeisen, Bradley R. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (04) :1444-1449
[9]   Does willingness to pay for green energy differ by source? [J].
Borchers, Allison M. ;
Duke, Joshua M. ;
Parsons, George R. .
ENERGY POLICY, 2007, 35 (06) :3327-3334
[10]   Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants [J].
Bretschger, Orianna ;
Obraztsova, Anna ;
Sturm, Carter A. ;
Chang, In Seop ;
Gorby, Yuri A. ;
Reed, Samantha B. ;
Culley, David E. ;
Reardon, Catherine L. ;
Barua, Soumitra ;
Romine, Margaret F. ;
Zhou, Jizhong ;
Beliaev, Alexander S. ;
Bouhenni, Rachida ;
Saffarini, Daad ;
Mansfeld, Florian ;
Kim, Byung-Hong ;
Fredrickson, James K. ;
Nealson, Kenneth H. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (21) :7003-7012