Reactive sputtered Ni-SDC cermet alloy anode for low-temperature solid oxide fuel cell

被引:9
作者
Kim, Taeyoung [1 ]
Kim, Hyong June [2 ]
Go, Dohyun [2 ]
Shin, Jeong Woo [3 ]
Yang, Byung Chan [4 ]
Cho, Gu Young [5 ]
Gur, Turgut M. [6 ]
An, Jihwan [1 ]
机构
[1] Seoul Natl Univ Sci & Technol SeoulTech, Dept Mfg Syst & Design Engn, Seoul, South Korea
[2] Seoul Natl Univ Sci & Technol SeoulTech, Dept Nanobio Engn, Seoul, South Korea
[3] Seoul Natl Univ Sci & Technol SeoulTech, Dept New Energy Engn, Seoul, South Korea
[4] Seoul Natl Univ Sci & Technol SeoulTech, Dept Nanoit Fus Engn, Seoul, South Korea
[5] Dankook Univ, Dept Mech Engn, Seoul, South Korea
[6] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA USA
关键词
Solid oxide fuel cell; Anode; Reactive sputtering; Ni-SDC; HIGH-PERFORMANCE; CONDUCTIVITY; ELECTROLYTE; DEPOSITION; LAYER;
D O I
10.1016/j.jallcom.2022.166332
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The facile deposition process for multi-component films is crucial in the development of thin film low -temperature solid oxide fuel cells (LT-SOFCs). Here, we report on the development and optimization of reactive sputtered Ni-SDC(Ni-Sm:CeO2) films for LT-SOFC anodes. The effects of oxygen partial pressure (PO2/PAr of 0 %-50 % at the sputter pressure of 30 mTorr) and deposition temperature on the physical, chemical and electrochemical properties of Ni-SDC films are studied. While the Ni-SDC anodes deposited at high PO2/PAr (> 20 %) exhibited higher initial performance, they suffered from crack formation and massive Ni agglomeration upon operation due to NiO-to-Ni reduction and severe volume change. We further show that increasing the deposition temperature to 500 degrees C was effective in suppressing such Ni agglomeration and preserving the performance during operation.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Enhancing Charge Transfer Kinetics by Nanoscale Catalytic Cermet Interlayer [J].
An, Jihwan ;
Kim, Young-Beom ;
Guer, Turgut M. ;
Prinz, Fritz B. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6789-6794
[2]   Fundamental understanding and modeling of reactive sputtering processes [J].
Berg, S ;
Nyberg, T .
THIN SOLID FILMS, 2005, 476 (02) :215-230
[3]   High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells [J].
Garcia-Garcia, F. J. ;
Beltran, A. M. ;
Yubero, E. ;
Gonzalez-Elipe, A. R. ;
Lambert, R. M. .
JOURNAL OF POWER SOURCES, 2017, 363 :251-259
[4]   THE DEVELOPMENT OF GRAIN-STRUCTURE DURING GROWTH OF METALLIC-FILMS [J].
GROVENOR, CRM ;
HENTZELL, HTG ;
SMITH, DA .
ACTA METALLURGICA, 1984, 32 (05) :773-781
[5]   Method for Determining Crystal Grain Size by X-Ray Diffraction [J].
He, Kai ;
Chen, Nuofu ;
Wang, Congjie ;
Wei, Lishuai ;
Chen, Jikun .
CRYSTAL RESEARCH AND TECHNOLOGY, 2018, 53 (02)
[6]   Ceria-based solid electrolytes - Review [J].
Inaba, H ;
Tagawa, H .
SOLID STATE IONICS, 1996, 83 (1-2) :1-16
[7]   Ru/Samaria-doped ceria gradient cermet anode for direct-methane solid oxide fuel cell [J].
Kim, Hyong June ;
Kil, Min Jong ;
Lee, Jemin ;
Yang, Byung Chan ;
Go, Dohyun ;
Lim, Yonghyun ;
Kim, Young-Beom ;
An, Jihwan .
APPLIED SURFACE SCIENCE, 2021, 538
[8]   Investigation of Reducing In-Plane Resistance of Nickel Oxide-Samaria-Doped Ceria Anode in Thin-Film Solid Oxide Fuel Cells [J].
Kim, Yusung ;
Lee, Sanghoon ;
Cho, Gu Young ;
Yu, Wonjong ;
Lee, Yeageun ;
Chang, Ikwhang ;
Baek, Jong Dae ;
Cha, Suk Won .
ENERGIES, 2020, 13 (08)
[9]   Characterization of thin film solid oxide fuel cells with variations in the thickness of nickel oxide-gadolinia doped ceria anode [J].
Kim, Yusung ;
Noh, Seungtak ;
Cho, Gu Young ;
Park, Taehyun ;
Lee, Yoon Ho ;
Yu, Wonjong ;
Lee, Yeageun ;
Tanveer, Waqas Hassan ;
Cha, Suk Won .
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2016, 17 (08) :1079-1083
[10]   Microstructural features of RF-sputtered SOFC anode and electrolyte materials [J].
La O, GJ ;
Hertz, J ;
Tuller, H ;
Shao-Horn, Y .
JOURNAL OF ELECTROCERAMICS, 2004, 13 (1-3) :691-695