MRI radiomics-based nomogram for individualised prediction of synchronous distant metastasis in patients with clear cell renal cell carcinoma

被引:24
作者
Bai, Xu [1 ,2 ]
Huang, Qingbo [3 ]
Zuo, Panli [4 ]
Zhang, Xiaojing [2 ]
Yuan, Jing [5 ]
Zhang, Xu [3 ]
Wang, Meifeng [2 ]
Xu, Wei [2 ]
Ye, Huiyi [2 ]
Zhao, Jinkun [6 ]
Sun, Haoran [7 ]
Shao, Bin [8 ]
Wang, Haiyi [2 ]
机构
[1] Med Sch Chinese PLA, 28 Fuxing Rd, Beijing 100853, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Radiol, 28 Fuxing Rd, Beijing 100853, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Urol, 28 Fuxing Rd, Beijing 100853, Peoples R China
[4] Huiying Med Technol Co Ltd, Dongsheng Sci & Technol Pk, Beijing 100192, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Pathol, 28 Fuxing Rd, Beijing 100853, Peoples R China
[6] Tianjin Med Univ Canc Inst & Hosp, Dept Radiol, North Huanhu West Rd Sports Inst, Tianjin 300060, Peoples R China
[7] Tianjin Med Univ, Dept Radiol, Gen Hosp, 154 Anshan Rd, Tianjin 300052, Peoples R China
[8] Weihai Cent Hosp, Dept Radiol, 3 West Part Mishan East Rd, Weihai 264400, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Clear cell renal cell carcinoma; Metastasis; Multiparametric MRI; Radiomics; Nomogram; TUMOR SIZE; TEXTURE ANALYSIS; CT TEXTURE; CANCER; FEATURES; DIFFERENTIATION; REPRODUCIBILITY; RADIOGENOMICS; RISK;
D O I
10.1007/s00330-020-07184-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To evaluate the performance of a multiparametric MRI radiomics-based nomogram for the individualised prediction of synchronous distant metastasis (SDM) in patients with clear cell renal cell carcinoma (ccRCC). Methods Two-hundred and one patients (training cohort:n= 126; internal validation cohort:n= 39; external validation cohort:n= 36) with ccRCC were retrospectively enrolled between January 2013 and June 2019. In the training cohort, the optimal MRI radiomics features were selected and combined to calculate the radiomics score (Rad-score). Incorporating Rad-score and SDM-related clinicoradiologic characteristics, the radiomics-based nomogram was established by multivariable logistic regression analysis, then the performance of the nomogram (discrimination and clinical usefulness) was evaluated and validated subsequently. Moreover, the prediction efficacy for SDM in ccRCC subgroups of different sizes was also assessed. Results Incorporating Rad-score derived from 9 optimal MR radiomics features (age, pseudocapsule and regional lymph node), the radiomics-based nomogram was capable of predicting SDM in the training cohort (area under the ROC curve (AUC) = 0.914) and validated in both the internal and external cohorts (AUC = 0.854 and 0.816, respectively) and also showed a convincing predictive power in ccRCC subgroups of different sizes (<= 4 cm, AUC = 0.875; 4-7 cm, AUC = 0.891; 7-10 cm, 0.908; > 10 cm, AUC = 0.881). Decision curve analysis indicated that the radiomics-based nomogram is of clinical usefulness. Conclusions The multiparametric MRI radiomics-based nomogram could achieve precise individualised prediction of SDM in patients with ccRCC, potentially improving the management of ccRCC.
引用
收藏
页码:1029 / 1042
页数:14
相关论文
共 44 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Nomograms in oncology: more than meets the eye [J].
Balachandran, Vinod P. ;
Gonen, Mithat ;
Smith, J. Joshua ;
DeMatteo, Ronald P. .
LANCET ONCOLOGY, 2015, 16 (04) :E173-E180
[3]   Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade [J].
Bektas, Ceyda Turan ;
Kocak, Burak ;
Yardimci, Aytul Hande ;
Turkcanoglu, Mehmet Hamza ;
Yucetas, Ugur ;
Koca, Sevim Baykal ;
Erdim, Cagri ;
Kilickesmez, Ozgur .
EUROPEAN RADIOLOGY, 2019, 29 (03) :1153-1163
[4]   Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics [J].
Cui, Enming ;
Li, Zhuoyong ;
Ma, Changyi ;
Li, Qing ;
Lei, Yi ;
Lan, Yong ;
Yu, Juan ;
Zhou, Zhipeng ;
Li, Ronggang ;
Long, Wansheng ;
Lin, Fan .
EUROPEAN RADIOLOGY, 2020, 30 (05) :2912-2921
[5]   Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a population-based study [J].
Dabestani, Saeed ;
Thorstenson, Andreas ;
Lindblad, Per ;
Harmenberg, Ulrika ;
Ljungberg, Borje ;
Lundstam, Sven .
WORLD JOURNAL OF UROLOGY, 2016, 34 (08) :1081-1086
[6]   Current Challenges in Diagnosis and Assessment of the Response of Locally Advanced and Meta-static Renal Cell Carcinoma [J].
de Leon, Alberto Diaz ;
Pirasteh, Ali ;
Costa, Daniel N. ;
Kapur, Payal ;
Hammers, Hans ;
Brugarolas, James ;
Pedrosa, Ivan .
RADIOGRAPHICS, 2019, 39 (04) :998-1016
[7]   CT texture analysis in the differentiation of major renal cell carcinoma subtypes and correlation with Fuhrman grade [J].
Deng, Yu ;
Soule, Erik ;
Samuel, Aster ;
Shah, Sakhi ;
Cui, Enming ;
Asare-Sawiri, Michael ;
Sundaram, Chandru ;
Lall, Chandana ;
Sandrasegaran, Kumaresan .
EUROPEAN RADIOLOGY, 2019, 29 (12) :6922-6929
[8]   Synchronous Versus Metachronous Metastatic Disease: Impact of Time to Metastasis on Patient Outcome-Results from the International Metastatic Renal Cell Carcinoma Database Consortium [J].
Donskov, Frede ;
Xie, Wanling ;
Overby, Anders ;
Wells, J. Connor ;
Fraccon, Anna P. ;
Sacco, Cosimo S. ;
Porta, Camillo ;
Stukalin, Igor ;
Lee, Jae-Lyun ;
Koutsoukos, Konstantinos ;
Yuasa, Takeshi ;
Davis, Ian D. ;
Pezaro, Carmel ;
Kanesvaran, Ravindran ;
Bjarnason, Georg A. ;
Sim, Hao-Wen ;
Rathi, Nityam ;
Kollmannsberger, Christian K. ;
Canil, Christina M. ;
Choueiri, Toni K. ;
Heng, Daniel Y. C. .
EUROPEAN UROLOGY ONCOLOGY, 2020, 3 (04) :530-539
[9]   Radiographic size of retroperitoneal lymph nodes predicts pathological nodal involvement for patients with renal cell carcinoma: development of a risk prediction model [J].
Gershman, Boris ;
Takahashi, Naoki ;
Moreira, Daniel M. ;
Thompson, Robert H. ;
Boorjian, Stephen A. ;
Lohse, Christine M. ;
Costello, Brian A. ;
Cheville, John C. ;
Leibovich, Bradley C. .
BJU INTERNATIONAL, 2016, 118 (05) :742-749
[10]   Overview of Current and Future First-Line Systemic Therapy for Metastatic Clear Cell Renal Cell Carcinoma [J].
Gill, David M. ;
Hahn, Andrew W. ;
Hale, Peter ;
Maughan, Benjamin L. .
CURRENT TREATMENT OPTIONS IN ONCOLOGY, 2018, 19 (01)