Single-walled carbon nanotube coated antibacterial paper: preparation and mechanistic study

被引:70
作者
Deokar, Archana R. [1 ]
Lin, Lih-Yuan [2 ]
Chang, Chun-Chao [3 ,4 ]
Ling, Yong-Chien [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Dept Life Sci, Hsinchu 30013, Taiwan
[3] Taipei Med Univ, Coll Med, Sch Med, Dept Internal Med, Taipei 11031, Taiwan
[4] Taipei Med Univ Hosp, Dept Internal Med, Div Gastroenterol & Hepatol, Taipei 11031, Taiwan
关键词
MODIFIED NANOPARTICLES; BACTERIAL SURFACES; CELLS; GRAPHENE; DISINFECTION; SPECTROSCOPY; ELUCIDATION; INFECTIONS; ULTRASOUND; BIOFILMS;
D O I
10.1039/c3tb20188k
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Development of carbon nanotubes toward commercial antibacterial applications warrants the understanding of their interaction mechanism with bacterial cells. The antibacterial activity and mechanism of acid-functionalized single-walled carbon nanotube (AFSWCNT) coated paper was assessed for gram-positive Staphylococcus aureus and gram-negative Escherichia coli models of bacteria. Better activity towards gram-positive bacteria was observed, whereas the presence of an outer membrane makes gram-negative bacteria more resistant to cell membrane damage caused by AFSWCNTs. Based on measured cytoplasmic efflux materials of bacteria, X-ray photoelectron spectroscopy, and scanning transmission electron microscopy combined with electron energy-loss spectroscopy imaging studies, we found that the better antibacterial activity of AFSWCNTs toward gram-positive bacteria is attributed to not only direct physical contact and piercing action, but also molecular-scale interaction with surface functional groups of bacteria. The novel antibacterial mechanism of AFSWCNTs might bring a promising strategy to design new antibacterial materials against drug-resistant bacteria species.
引用
收藏
页码:2639 / 2646
页数:8
相关论文
共 54 条
[1]   Antimicrobial Applications of Electroactive PVK-SWNT Nanocomposites [J].
Ahmed, Farid ;
Santos, Catherine M. ;
Vergara, Regina Aileen May V. ;
Tria, Maria Celeste R. ;
Advincula, Rigoberto ;
Rodrigues, Debora F. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (03) :1804-1810
[2]   Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents [J].
Akhavan, O. ;
Azimirad, R. ;
Safa, S. ;
Larijani, M. M. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7386-7392
[3]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[4]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[5]   Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury [J].
Applerot, Guy ;
Lipovsky, Anat ;
Dror, Rachel ;
Perkas, Nina ;
Nitzan, Yeshayahu ;
Lubart, Rachel ;
Gedanken, Aharon .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (06) :842-852
[6]   Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms [J].
Banerjee, Indrani ;
Pangule, Ravindra C. ;
Kane, Ravi S. .
ADVANCED MATERIALS, 2011, 23 (06) :690-718
[7]   Applications of Ultrasound to the Synthesis of Nanostructured Materials [J].
Bang, Jin Ho ;
Suslick, Kenneth S. .
ADVANCED MATERIALS, 2010, 22 (10) :1039-1059
[8]   A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens [J].
Brady-Estevez, Anna S. ;
Kang, Seoktae ;
Elimelech, Menachem .
SMALL, 2008, 4 (04) :481-484
[9]   Morphological variation of multiwall carbon nanotubes in supercritical water oxidation [J].
Chang, JY ;
Lo, B ;
Jeng, M ;
Tzing, SH ;
Ling, YC .
APPLIED PHYSICS LETTERS, 2004, 85 (13) :2613-2615
[10]  
Chen Y., 2012, Nat. Comm, V3, P1