Degree Ramsey numbers for cycles and blowups of trees

被引:9
作者
Jiang, Tao [1 ]
Milans, Kevin G. [2 ]
West, Douglas B. [3 ]
机构
[1] Miami Univ, Dept Math, Oxford, OH 45056 USA
[2] Univ S Carolina, Dept Math & Comp Sci, Columbia, SC 29208 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
COMPLETE BIPARTITE GRAPHS; COMPLETE SUBGRAPHS; COMPONENTS;
D O I
10.1016/j.ejc.2012.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H ->(s) G mean that every s-coloring of E(H) produces a monochromatic copy of G in some color class. Let the s-color degree Ramsey number of a graph G, written R-Delta(G; s), be min{Delta(H): H ->(s) G}. We prove that the 2-color degree Ramsey number is at most 96 for every even cycle and at most 3458 for every odd cycle. For the general s-color problem on even cycles, we prove R-Delta(C-2m; s) <= 16s(6) for all m, and R-Delta (C-4; s) >= 0.007s(14/9). The constant upper bound for R-Delta(C-n; 2) uses blowups of graphs, where the d-blowup of a graph G is the graph G' obtained by replacing each vertex of G with an independent set of size d and each edge e of G with a copy of the complete bipartite graph K-d.d. We also prove the existence of a function f such that if G' is the d-blowup of G, then R-Delta(G'; s) <= f (R-Delta(G; s), s, d). (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:414 / 423
页数:10
相关论文
共 34 条
  • [1] Partitioning into graphs with only small components
    Alon, N
    Ding, GL
    Oporowski, B
    Vertigan, D
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 87 (02) : 231 - 243
  • [2] Alon N., 2000, PROBABILISTIC METHOD
  • [3] ON SIZE RAMSEY NUMBER OF PATHS, TREES, AND CIRCUITS .1.
    BECK, J
    [J]. JOURNAL OF GRAPH THEORY, 1983, 7 (01) : 115 - 129
  • [4] BECK J, 1990, ALGORITHMS COMBINATO, V5, P34, DOI DOI 10.1007/978-3-642-72905-8_4
  • [5] The 3-colored Ramsey number of even cycles
    Benevides, Fabricio Siqueira
    Skokan, Jozef
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) : 690 - 708
  • [6] Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
  • [7] BURR S. A., 1976, Ars Combin., V1, P167
  • [8] MULTICOLOR RAMSEY NUMBERS FOR COMPLETE BIPARTITE GRAPHS
    CHUNG, FRK
    GRAHAM, RL
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) : 164 - 169
  • [9] A new upper bound for the bipartite Ramsey problem
    Conlon, David
    [J]. JOURNAL OF GRAPH THEORY, 2008, 58 (04) : 351 - 356
  • [10] A note on the size-Ramsey number of long subdivisions of graphs
    Donadelli, J
    Haxell, PE
    Kohayakawa, Y
    [J]. RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2005, 39 (01): : 191 - 206