One-stage exponential integrators for nonlinear Schrodinger equations over long times

被引:37
作者
Cohen, David [1 ]
Gauckler, Ludwig [2 ]
机构
[1] Univ Basel, Math Inst, CH-4051 Basel, Switzerland
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Nonlinear Schrodinger equation; Exponential integrators; Long-time behavior; Near-conservation of actions; energy; mass and momentum; Modulated Fourier expansion; DIFFERENTIAL-EQUATIONS; WAVE-EQUATIONS; NORMAL-FORM; SCHEMES; SYSTEMS; ENERGY;
D O I
10.1007/s10543-012-0385-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Near-conservation over long times of the actions, of the energy, of the mass and of the momentum along the numerical solution of the cubic Schrodinger equation with small initial data is shown. Spectral discretization in space and one-stage exponential integrators in time are used. The proofs use modulated Fourier expansions.
引用
收藏
页码:877 / 903
页数:27
相关论文
共 26 条
[1]  
[Anonymous], 2006, SPRINGER SERIES COMP
[2]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[3]   Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations [J].
Bourgain, J .
ANNALS OF MATHEMATICS, 1998, 148 (02) :363-439
[4]  
Cano B, 2006, NUMER MATH, V103, P197, DOI 10.1007/S00211-006-0680-3
[5]   Exponential Methods for the Time Integration of Schrodinger Equation [J].
Cano, B. ;
Gonzalez-Pachon, A. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 :1821-1823
[6]  
Cano B., 2011, PREPRINT
[7]   PROPAGATION OF GEVREY REGULARITY OVER LONG TIMES FOR THE FULLY DISCRETE LIE TROTTER SPLITTING SCHEME APPLIED TO THE LINEAR SCHRODINGER EQUATION [J].
Castella, Francois ;
Dujardin, Guillaume .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04) :651-676
[8]   Symmetric exponential integrators with an application to the cubic Schrodinger equation [J].
Celledoni, Elena ;
Cohen, David ;
Owren, Brynjulf .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (03) :303-317
[9]   Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations [J].
Cohen, David ;
Hairer, Ernst ;
Lubich, Christian .
NUMERISCHE MATHEMATIK, 2008, 110 (02) :113-143
[10]   MODIFIED ENERGY FOR SPLIT-STEP METHODS APPLIED TO THE LINEAR SCHRODINGER EQUATION [J].
Debussche, Arnaud ;
Faou, Erwan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3705-3719