On some upper bounds for the zeta-function and the Dirichlet divisor problem

被引:0
作者
Ivic, Aleksandar [1 ]
机构
[1] Univ Beogradu, Katedra Matemat RGF A, Djusina 7, Beograd 11000, Serbia
关键词
Dirichlet divisor problem; Riemann zeta-function; integral of the error term; mean value estimates; HIGHER-POWER MOMENTS; MEAN-SQUARE; ERROR TERM; DELTA(X);
D O I
10.1142/S1793042116501347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d(n) be the number of divisors of n, let Delta(x) := Sigma(n <= x) d(n) - x(log x + 2 gamma - 1) denote the error term in the classical Dirichlet divisor problem, and let zeta(s) denote the Riemann zeta-function. Several upper bounds for integrals of the type integral(T)(0) Delta(k)(t) = vertical bar zeta(1/2 + it)vertical bar(2m) dt (k, m is an element of N) are given. This complements the results of [A. Ivi ' c and W. Zhai, On some mean value results for vertical bar zeta(1/2 + it)vertical bar and a divisor problem II, Indag. Math. 26(5) (2015) 842-866], where asymptotic formulas for 2 <= k <= 8, m = 1 were established for the above integral.
引用
收藏
页码:2231 / 2239
页数:9
相关论文
共 19 条
[1]   THE MEAN-VALUE OF THE RIEMANN ZETA-FUNCTION [J].
ATKINSON, FV .
ACTA MATHEMATICA, 1949, 81 (04) :353-376
[2]  
BOURGAIN J., 2014, ARXIV14085794
[3]   THE DISTRIBUTION AND MOMENTS OF THE ERROR TERM IN THE DIRICHLET DIVISOR PROBLEM [J].
HEATHBROWN, DR .
ACTA ARITHMETICA, 1992, 60 (04) :389-415
[4]   Exponential sums and lattice points III [J].
Huxley, MN .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :591-609
[5]  
Ivi A., 1995, J NUMBER THEORY, V51, P16
[6]  
IVIC A, 1994, P LOND MATH SOC, V69, P309
[7]  
Ivic A., 1985, The Riemann Zeta-Function
[8]  
Ivic A., 2014, ARXIV14060604
[9]   On some mean value results for the zeta-function and a divisor problem II [J].
Ivic, Aleksandar ;
Zhai, Wenguang .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (05) :842-866
[10]   RIEMANNS ZETA-FUNCTION AND THE DIVISOR PROBLEM [J].
JUTILA, M .
ARKIV FOR MATEMATIK, 1983, 21 (01) :75-96