The Final Log Canonical Model of the Moduli Space of Stable Curves of Genus 4

被引:13
作者
Fedorchuk, Maksym [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
D O I
10.1093/imrn/rnr242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the GIT quotient of the linear system of (3, 3) curves on P-1 x P-1 as the final nontrivial log canonical model of (M) over bar (4), isomorphic to (M) over bar (4)(alpha) for 8/17 < alpha <= 29/60. We describe singular curves parameterized by <(M)over bar>(4)(29/60), and show that the rational map (M) over bar (4) ---> (M) over bar (4) (29/60) contracts the Petri divisor, in addition to the boundary divisors Delta(1) and Delta(2). This answers a question of Farkas.
引用
收藏
页码:5650 / 5672
页数:23
相关论文
共 21 条
[1]  
Alper J., 2010, ARXIV10120538MATHAG
[2]  
Alper J., 2011, ARXIV11105960MATHAG
[3]   LOCAL NORMAL FORMS OF FUNCTIONS [J].
ARNOLD, VI .
INVENTIONES MATHEMATICAE, 1976, 35 :87-109
[4]  
Casalaina-Martin S., 2011, VARIATION GIT GENUS
[5]  
Casalaina-Martin S., 2011, P UGA C MOD VECT BUN
[6]   A SIMPLER PROOF OF THE GIESEKER-PETRI THEOREM ON SPECIAL DIVISORS [J].
EISENBUD, D ;
HARRIS, J .
INVENTIONES MATHEMATICAE, 1983, 74 (02) :269-280
[7]  
Farkas G., 2010, COMMUNICATION
[8]   RATIONAL MAPS BETWEEN MODULI SPACES OF CURVES AND GIESEKER-PETRI DIVISORS [J].
Farkas, Gavril .
JOURNAL OF ALGEBRAIC GEOMETRY, 2010, 19 (02) :243-284
[9]  
Fedorchuk M., 2010, HDB MODULI
[10]  
Fedorchuk M., 2010, ARXIV10074828V2MATHA