The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action

被引:87
作者
Finci, Lorenzo I. [1 ]
Zhang, Xiaofeng [1 ]
Huang, Xiuliang [1 ]
Zhou, Qiang [1 ]
Tsai, Jennifer [2 ]
Teng, Teng [2 ]
Agrawal, Anant [2 ]
Chan, Betty [2 ]
Irwin, Sean [2 ]
Karr, Craig [2 ]
Cook, Andrew [2 ]
Zhu, Ping [2 ]
Reynolds, Dominic [2 ]
Smith, Peter G. [2 ]
Fekkes, Peter [2 ]
Buonamici, Silvia [2 ]
Larsen, Nicholas A. [2 ]
机构
[1] Tsinghua Univ, Sch Life Sci, Tsinghua Peking Joint Ctr Life Sci, Beijing Adv Innovat Ctr Struct Biol, Beijing 100084, Peoples R China
[2] H3 Biomed Inc, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
cancer; drug discovery; single particle cryo-EM; spliceosome; U2; SNRNP; MUTATIONS; RESOLUTION; TARGET; SELECTION; PRODUCT; U2AF35; E7107; SRSF2; SITE;
D O I
10.1101/gad.311043.117
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Somatic mutations in spliceosome proteins lead to dysregulated RNA splicing and are observed in a variety of cancers. These genetic aberrations may offer a potential intervention point for targeted therapeutics. SF3B1, part of the U2 small nuclear RNP (snRNP), is targeted by splicing modulators, including E7107, the first to enter clinical trials, and, more recently, H3B-8800. Modulating splicing represents a first-in-class opportunity in drug discovery, and elucidating the structural basis for the mode of action opens up new possibilities for structure-based drug design. Here, we present the cryogenic electron microscopy (cryo-EM) structure of the SF3b subcomplex (SF3B1, SF3B3, PHF5A, and SF3B5) bound to E7107 at 3.95 angstrom. This structure shows that E7107 binds in the branch point adenosine-binding pocket, forming close contacts with key residues that confer resistance upon mutation: SF3B1(R1074H) and PHF5A(Y36C). The structure suggests a model in which splicing modulators interfere with branch point adenosine recognition and supports a substrate competitive mechanism of action (MOA). Using several related chemical probes, wevalidate the pose of the compound and support their substrate competitive MOA by comparing their activity against both strong and weak pre-mRNA substrates. Finally, we present functional data and structure-activity relationship (SAR) on the PHF5A(R38C) mutation that sensitizes cells to some chemical probes but not others. Developing small molecule splicing modulators represents a promising therapeutic approach for a variety of diseases, and this work provides a significant step in enabling structure-based drug design for these elaborate natural products. Importantly, this work also demonstrates that the utilization of cryo-EM in drug discovery is coming of age.
引用
收藏
页码:309 / 320
页数:12
相关论文
共 49 条
[21]   Splicing factor SF3b as a target of the antitumor natural product pladienolide [J].
Kotake, Yoshihiko ;
Sagane, Koji ;
Owa, Takashi ;
Mimori-Kiyosue, Yuko ;
Shimizu, Hajime ;
Uesugi, Mai ;
Ishihama, Yasushi ;
Iwata, Masao ;
Mizui, Yoshiharu .
NATURE CHEMICAL BIOLOGY, 2007, 3 (09) :570-575
[22]   Pre-mRNA Splicing-Modulatory Pharmacophores: The Total Synthesis of Herboxidiene, a Pladienolide-Herboxidiene Hybrid Analog and Related Derivatives [J].
Lagisetti, Chandraiah ;
Yermolina, Maria V. ;
Sharma, Lalit Kumar ;
Palacios, Gustavo ;
Prigaro, Brett J. ;
Webb, Thomas R. .
ACS CHEMICAL BIOLOGY, 2014, 9 (03) :643-648
[23]   Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia [J].
Landau, Dan A. ;
Carter, Scott L. ;
Stojanov, Petar ;
McKenna, Aaron ;
Stevenson, Kristen ;
Lawrence, Michael S. ;
Sougnez, Carrie ;
Stewart, Chip ;
Sivachenko, Andrey ;
Wang, Lili ;
Wan, Youzhong ;
Zhang, Wandi ;
Shukla, Sachet A. ;
Vartanov, Alexander ;
Fernandes, Stacey M. ;
Saksena, Gordon ;
Cibulskis, Kristian ;
Tesar, Bethany ;
Gabriel, Stacey ;
Hacohen, Nir ;
Meyerson, Matthew ;
Lander, Eric S. ;
Neuberg, Donna ;
Brown, Jennifer R. ;
Getz, Gad ;
Wu, Catherine J. .
CELL, 2013, 152 (04) :714-726
[24]   Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing [J].
Lardelli, Rea M. ;
Thompson, James X. ;
Yates, John R., III ;
Stevens, Scott W. .
RNA, 2010, 16 (03) :516-528
[25]   The DynDom database of protein domain motions [J].
Lee, RA ;
Razaz, M ;
Hayward, S .
BIOINFORMATICS, 2003, 19 (10) :1290-1291
[26]   Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope [J].
Lei, JL ;
Frank, J .
JOURNAL OF STRUCTURAL BIOLOGY, 2005, 150 (01) :69-80
[27]   Splicing is required for rapid and efficient mRNA export in metazoans [J].
Luo, MJ ;
Reed, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14937-14942
[28]   Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery [J].
Merk, Alan ;
Bartesaghi, Alberto ;
Banerjee, Soojay ;
Falconieri, Veronica ;
Rao, Prashant ;
Davis, Mindy I. ;
Pragani, Rajan ;
Boxer, Matthew B. ;
Earl, Lesley A. ;
Milne, Jacqueline L. S. ;
Subramaniam, Sriram .
CELL, 2016, 165 (07) :1698-1707
[29]   Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in chronic myelomonocytic leukemia: Prevalence, clinical correlates, and prognostic relevance [J].
Patnaik, Mrinal M. ;
Lasho, Terra L. ;
Finke, Christy M. ;
Hanson, Curtis A. ;
Hodnefield, Janice M. ;
Knudson, Ryan A. ;
Ketterling, Rhett P. ;
Pardanani, Animesh ;
Tefferi, Ayalew .
AMERICAN JOURNAL OF HEMATOLOGY, 2013, 88 (03) :201-206
[30]   A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing [J].
Pellizzoni, L ;
Kataoka, N ;
Charroux, B ;
Dreyfuss, G .
CELL, 1998, 95 (05) :615-624