共 50 条
Porous NiO/graphene composite thin films as high performance anodes for lithium-ion batteries
被引:16
|作者:
Chen, Chunhui
[1
]
Perdomo, Pedro J.
[2
]
Fernandez, Melisa
[3
]
Barbeito, Andres
[4
]
Wang, Chunlei
[1
]
机构:
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[2] Miami Dade Cty Publ Sch, Lamar Louise Curry Middle Sch, Miami, FL 33185 USA
[3] Miami Dade Cty Publ Sch, MAST Acad, Miami, FL 33149 USA
[4] Univ Florida, Dept Mech Engn, Gainesville, FL 32612 USA
基金:
美国国家科学基金会;
关键词:
Nickel oxide;
Graphene;
Electrostatic spray deposition;
Conversion reaction;
Lithium ion battery;
ENHANCED ELECTROCHEMICAL PERFORMANCE;
ELECTRODE MATERIALS;
GRAPHENE;
CAPACITY;
HYBRID;
NANOSHEETS;
STORAGE;
ORIGIN;
D O I:
10.1016/j.est.2016.08.008
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Porous NiO and NiO/graphene (NiOG) thin film electrodes were prepared by electrostatic spray deposition (ESD) technique and investigated as anodes for lithium ion batteries. The porous NiO structure was designed to better buffer the mechanical stress induced by the volume change of NiO as well as inhibit the aggregation of nanoparticles during conversion reaction. Aiming to facilitate better reaction kinetics compared to pure NiO electrode, graphene nanoplates were added to form NiOG composite film where additional graphene could be helpful for the electron transfer as conductive medium. As a result, porous NiOG composite thin film electrode exhibits high rate capability (759, 774, 614, 447, 243 and 104 mAh g (1) at 0.1, 0.2, 0.5,1, 2, and 5 A g (1), respectively) and excellent cycling performance (no capacity decrease for 500 cycles at 0.5 A g (1)). From analyzing cyclic voltammetry (CV) curves, rate and cyclical performance, and electrochemical impedance spectroscopy (EIS), it was concluded that NiOG composite electrodes exhibited enhanced electrochemical performance compared to NiO electrodes. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:198 / 204
页数:7
相关论文