Porous NiO/graphene composite thin films as high performance anodes for lithium-ion batteries

被引:16
|
作者
Chen, Chunhui [1 ]
Perdomo, Pedro J. [2 ]
Fernandez, Melisa [3 ]
Barbeito, Andres [4 ]
Wang, Chunlei [1 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[2] Miami Dade Cty Publ Sch, Lamar Louise Curry Middle Sch, Miami, FL 33185 USA
[3] Miami Dade Cty Publ Sch, MAST Acad, Miami, FL 33149 USA
[4] Univ Florida, Dept Mech Engn, Gainesville, FL 32612 USA
基金
美国国家科学基金会;
关键词
Nickel oxide; Graphene; Electrostatic spray deposition; Conversion reaction; Lithium ion battery; ENHANCED ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; GRAPHENE; CAPACITY; HYBRID; NANOSHEETS; STORAGE; ORIGIN;
D O I
10.1016/j.est.2016.08.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Porous NiO and NiO/graphene (NiOG) thin film electrodes were prepared by electrostatic spray deposition (ESD) technique and investigated as anodes for lithium ion batteries. The porous NiO structure was designed to better buffer the mechanical stress induced by the volume change of NiO as well as inhibit the aggregation of nanoparticles during conversion reaction. Aiming to facilitate better reaction kinetics compared to pure NiO electrode, graphene nanoplates were added to form NiOG composite film where additional graphene could be helpful for the electron transfer as conductive medium. As a result, porous NiOG composite thin film electrode exhibits high rate capability (759, 774, 614, 447, 243 and 104 mAh g (1) at 0.1, 0.2, 0.5,1, 2, and 5 A g (1), respectively) and excellent cycling performance (no capacity decrease for 500 cycles at 0.5 A g (1)). From analyzing cyclic voltammetry (CV) curves, rate and cyclical performance, and electrochemical impedance spectroscopy (EIS), it was concluded that NiOG composite electrodes exhibited enhanced electrochemical performance compared to NiO electrodes. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:198 / 204
页数:7
相关论文
共 50 条
  • [31] Thin MoS2 Nanoflakes Encapsulated in Carbon Nanofibers as High-Performance Anodes for Lithium-Ion Batteries
    Zhao, Chenyang
    Kong, Junhua
    Yao, Xiayin
    Tang, Xiaosheng
    Dong, Yuliang
    Phua, Si Lei
    Lu, Xuehong
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (09) : 6392 - 6398
  • [32] Superlithiation Performance of Covalent Triazine Frameworks as Anodes in Lithium-Ion Batteries
    Jiang, Fei
    Wang, Yeji
    Qiu, Tianpei
    Zhang, Yi
    Zhu, Weijie
    Yang, Chaofan
    Huang, Junjie
    Fang, Zebo
    Dai, Guoliang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (41) : 48818 - 48827
  • [33] Ultrasonic synthesis of CoO/graphene nanohybrids as high performance anode materials for lithium-ion batteries
    Chen Bing-di
    Peng Cheng-xin
    Cui Zheng
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2012, 22 (10) : 2517 - 2522
  • [34] Silicon Thin Films as Anodes for High-Performance Lithium-Ion Batteries with Effective Stress Relaxation
    Yu, Cunjiang
    Li, Xin
    Ma, Teng
    Rong, Jiepeng
    Zhang, Rongjun
    Shaffer, Joseph
    An, Yonghao
    Liu, Qiang
    Wei, Bingqing
    Jiang, Hanqing
    ADVANCED ENERGY MATERIALS, 2012, 2 (01) : 68 - 73
  • [35] Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries
    Li, Qian
    Huang, Gang
    Yin, Dongming
    Wu, Yaoming
    Wang, Limin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (10) : 764 - 770
  • [36] Graphene - carbon nanotube - Mn3O4 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries
    Gangaraju, Deepa
    Sridhar, Vadahanambi
    Lee, Inwon
    Park, Hyun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 699 : 106 - 111
  • [37] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Jiang, Shuhua
    Yue, Wenbo
    Gao, Ziqi
    Ren, Yu
    Ma, Hui
    Zhao, Xinhua
    Liu, Yunling
    Yang, Xiaojing
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (10) : 3870 - 3876
  • [38] Synthesis of graphene supported Li2SiO3 as a high performance anode material for lithium-ion batteries
    Yang, Shuai
    Wang, Qiufen
    Miao, Juan
    Zhang, Jingyang
    Zhang, Dafeng
    Chen, Yumei
    Yang, Hong
    APPLIED SURFACE SCIENCE, 2018, 444 : 522 - 529
  • [39] Functionalized bioinspired porous carbon with graphene sheets as anode materials for lithium-ion batteries
    Imtiaz, Muhammad
    Zhu, Chengling
    Li, Yao
    Pak, MyongSop
    Zada, Imran
    Bokhari, Syeda Wishal
    Chen, Zhixin
    Zhang, Di
    Zhu, Shenmin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 724 : 296 - 305
  • [40] Fabrication of Porous Nitrogen-Doped Carbon Materials as Anodes for High-Performance Lithium Ion Batteries
    Ou, Junke
    Yang, Lin
    Zhang, Yongzhi
    Chen, Li
    Guo, Yong
    Xiao, Dan
    CHINESE JOURNAL OF CHEMISTRY, 2015, 33 (11) : 1293 - 1302