Orthogonal polynomials and generalized oscillator algebras

被引:33
作者
Borzov, VV [1 ]
机构
[1] St Petersburg Univ TElecommun, Dept Math, St Petersburg 191065, Russia
关键词
classical orthogonal polynomials; generalized oscillator algebras; Poisson kernels; generalized Fourier transform;
D O I
10.1080/10652460108819339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any orthogonal polynomials system on real line we construct an appropriate oscillator algebra such that the polynomials make up the eigenfunctions system of the oscillator hamiltonian. The general scheme is divided into two types: a symmetric scheme and a non-symmetric scheme. The general approach is illustrated by the examples of the classical orthogonal polynomials: Hermite, Jacobi and Laguerre polynomials. For these polynomials we obtain the explicit form of the hamiltonians, the energy levels and the explicit form of the impulse operators.
引用
收藏
页码:115 / 138
页数:24
相关论文
共 22 条
[1]  
AKHIESER NI, 1965, CLASSICIAL MOMENT PR
[2]  
ASKEY R, 1985, MEM AM MATH SOC, V54, P1
[3]  
ASKEY R, 1983, STUDIES PURE MATH, P55
[4]   On a general q-Fourier transformation with nonsymmetric kernels [J].
Askey, RA ;
Rahman, M ;
Suslov, SK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 68 (1-2) :25-55
[5]  
BIRMAN M. S., 1980, Spectral theory of selfadjoint operators in Hilbert space
[6]  
DAMASKINSKY EV, 1992, J SOVIET MATH, V62, P29
[7]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[8]   Q-ORTHOGONAL POLYNOMIALS AND THE OSCILLATOR QUANTUM GROUP [J].
FLOREANINI, R ;
VINET, L .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (01) :45-54
[9]  
GASPER G, 1990, ENCY MATH ITS APPL, V35
[10]  
KOEKOEK R, 1994, 9405 DELFT U TECHN