Non-eutectic Phase Change Materials for Cold Thermal Energy Storage

被引:12
|
作者
Sze, Jia Yin [1 ]
Mu, Chenzhong [1 ]
Romagnoli, Alessandro [1 ,2 ]
Li, Yongliang [3 ]
机构
[1] Energy Res Inst NTU, 1 CleanTech Loop,06-04, Singapore 637141, Singapore
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
来源
LEVERAGING ENERGY TECHNOLOGIES AND POLICY OPTIONS FOR LOW CARBON CITIES | 2017年 / 143卷
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
phase change materials; cold thermal energy storage; differential scanning calorimetry; LATENT-HEAT; AQUEOUS-SOLUTIONS; FUSION; ICE;
D O I
10.1016/j.egypro.2017.12.742
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Phase change materials provide high-density thermal energy storage and a wide range of temperatures are required to meet different storage applications for cascaded thermal storage systems. Thus, non-eutectic phase change materials, namely aqueous ethylene glycol and ethanol solutions, are investigated in this paper for potential applications in high-grade cold thermal energy storage applications. The aqueous solutions of varying concentrations are characterized by differential scanning calorimetry and thermal response measurements for bulk PCMs. The phase change materials are able to meet a wide range of storage temperatures with no issue of phase separation. Graphene oxide powder of 1 wt.% is added as a stable nano-filler to enhance thermal conductivity and reduce supercooling degrees. Through thermal response measurements, improvements of charging times in the phase change of aqueous ethylene glycol and ethanol solutions are observed. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:656 / 661
页数:6
相关论文
共 50 条
  • [41] Microencapsulated phase change materials as slurries for thermal energy storage: A review
    Pathak, Lagan
    Trivedi, G. V. N.
    Parameshwaran, R.
    Deshmukh, S. Sandip
    MATERIALS TODAY-PROCEEDINGS, 2021, 44 : 1960 - 1963
  • [42] Solar thermal energy storage and heat pumps with phase change materials
    Kapsalis, V.
    Karamanis, D.
    APPLIED THERMAL ENGINEERING, 2016, 99 : 1212 - 1224
  • [43] Thermal properties of phase change materials ionic liquid/fatty acids for thermal energy storage applications
    Faraji, Saeid
    Shekaari, Hemayat
    Zafarani-Moattar, Mohammed Taghi
    Mokhtarpour, Masumeh
    Asghari, Elnaz
    JOURNAL OF ENERGY STORAGE, 2023, 67
  • [44] Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges
    Reji Kumar R.
    Samykano M.
    Pandey A.K.
    Kadirgama K.
    Tyagi V.V.
    Renewable and Sustainable Energy Reviews, 2020, 133
  • [45] Preparation, Thermophysical Studies, and Corrosion Analysis of a Stable Capric Acid/Cetyl Alcohol Binary Eutectic Phase Change Material for Cold Thermal Energy Storage
    Veerakumar, Chinnasamy
    Sreekumar, Appukuttan
    ENERGY TECHNOLOGY, 2018, 6 (02) : 397 - 405
  • [46] Use of phase change materials for thermal energy storage in concrete: An overview
    Ling, Tung-Chai
    Poon, Chi-Sun
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 46 : 55 - 62
  • [47] A review on phase change materials (PCMs) for thermal energy storage implementations
    Hekimoglu, Gokhan
    Sari, Ahmet
    MATERIALS TODAY-PROCEEDINGS, 2022, 58 : 1360 - 1367
  • [48] Novel phase change cold energy storage materials for refrigerated transportation of fruits
    Li, Chuanchang
    Peng, Meicheng
    Xie, Baoshan
    Li, Yaxi
    Li, Mu
    RENEWABLE ENERGY, 2024, 220
  • [49] Impact of size and thermal gradient on supercooling of phase change materials for thermal energy storage
    Lilley, Drew
    Lau, Jonathan
    Dames, Chris
    Kaur, Sumanjeet
    Prasher, Ravi
    APPLIED ENERGY, 2021, 290
  • [50] Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage
    Li, Wan-Wan
    Cheng, Wen-Long
    Xie, Biao
    Liu, Na
    Zhang, Li-Song
    ENERGY CONVERSION AND MANAGEMENT, 2017, 149 : 1 - 12