Highly n-type doped InGaN films for efficient direct solar hydrogen generation

被引:7
作者
Mauder, C. [1 ]
Tuna, Oe [2 ]
Gutrath, B. [3 ]
Balmes, V. [1 ]
Behmenburg, H. [1 ]
Rzheutskii, M. V. [4 ]
Lutsenko, E. V. [4 ]
Yablonskii, G. P. [4 ]
Noyong, M. [3 ]
Simon, U. [3 ]
Heuken, M. [1 ,2 ]
Kalisch, H. [1 ]
Vescan, A. [1 ]
机构
[1] Rhein Westfal TH Aachen, GaN Device Technol, Sommerfeldstr 24, D-52074 Aachen, Germany
[2] AIXTRON SE, D-52134 Herzogenrath, Germany
[3] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany
[4] Natl Acad Sci Belarus, Stepanov Inst Phys, Minsk 220072, BELARUS
来源
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 3-4 | 2012年 / 9卷 / 3-4期
关键词
MOVPE; InGaN; photoelectrolysis; solar water; splitting; WATER;
D O I
10.1002/pssc.201100400
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We report on the metal organic vapour phase epitaxy (MOVPE) and characterization of n-type InGaN films for application in direct solar water splitting. The 40 nm thick films exhibit an In fraction of 15% and show good structural quality and a surface root mean square (RMS) roughness of only 0.7 nm. An electron concentration of 9 x 10(18) cm(-3) at a mobility of 185 cm(2)/Vs is assessed. The emission peak in photoluminescence (PL) spectra taken at room temperature (RT) is at 2.8 eV, which is consistent to transmission data and the expected bandgap value for this composition. Illumination of the InGaN electrode with a Xe lamp in a 1 M NaOH electrolyte solution at zero external voltage induces a photocurrent (PC) of 0.13 mA/cm(2) with a pronounced overshoot in the first few seconds, which we explain by the discharging of a Helmholtz bilayer capacitor. The PC linearly increases with applied voltage while the estimated total conversion efficiency peaks at 0.6 V. Although hydrogen bubbles visibly evolve from the Pt counter electrode, total conversion efficiencies are limited to 0.05%, which is ascribed to incomplete utilization of the optical excitation spectrum and low thickness of both the InGaN film and the space charge region at the semiconductor surface. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:964 / 967
页数:4
相关论文
共 11 条
  • [1] Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells
    Aryal, K.
    Pantha, B. N.
    Li, J.
    Lin, J. Y.
    Jiang, H. X.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (05)
  • [2] Photoelectrochemical properties of InGaN for H2 generation from aqueous water
    Fujii, K
    Kusakabe, K
    Ohkawa, K
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (10): : 7433 - 7435
  • [3] ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE
    FUJISHIMA, A
    HONDA, K
    [J]. NATURE, 1972, 238 (5358) : 37 - +
  • [4] Studies of stokes shift in InxGa1-xN alloys
    Huang, Y. H.
    Cheng, C. L.
    Chen, T. T.
    Chen, Y. F.
    Tsen, K. T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (10)
  • [5] Direct hydrogen gas generation by using InGaN epilayers as working electrodes
    Li, J.
    Lin, J. Y.
    Jiang, H. X.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (16)
  • [6] Stable response to visible light of InGaN photoelectrodes
    Luo, Wenjun
    Liu, Bin
    Li, Zhaosheng
    Xie, Zili
    Chen, Dunjun
    Zou, Zhigang
    Zhang, Rong
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (26)
  • [7] Photocatalysis for new energy production - Recent advances in photocatalytic water splitting reactions for hydrogen production
    Matsuoka, Masaya
    Kitano, Masaaki
    Takeuchi, Masato
    Tsujimaru, Koichiro
    Anpo, Masakazu
    Thomas, John M.
    [J]. CATALYSIS TODAY, 2007, 122 (1-2) : 51 - 61
  • [8] Soh C. B., IWN 2010 TAMP FLOR
  • [9] Slip systems and misfit dislocations in InGaN epilayers
    Srinivasan, S
    Geng, L
    Liu, R
    Ponce, FA
    Narukawa, Y
    Tanaka, S
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (25) : 5187 - 5189
  • [10] Microstructures produced during the epitaxial growth of InGaN alloys
    Stringfellow, G. B.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2010, 312 (06) : 735 - 749