Identification of MIMO systems with sparse transfer function coefficients

被引:5
作者
Qiu, Wanzhi [1 ]
Saleem, Syed Khusro [1 ]
Skafidas, Efstratios [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Natl ICT Australia, Parkville, Vic 3010, Australia
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2012年
关键词
system identification; MIMO system; sparse representation; L1-norm optimization;
D O I
10.1186/1687-6180-2012-104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the problem of estimating transfer functions of multivariable (multiple-input multiple-output--MIMO) systems with sparse coefficients. We note that subspace identification methods are powerful and convenient tools in dealing with MIMO systems since they neither require nonlinear optimization nor impose any canonical form on the systems. However, subspace-based methods are inefficient for systems with sparse transfer function coefficients since they work on state space models. We propose a two-step algorithm where the first step identifies the system order using the subspace principle in a state space format, while the second step estimates coefficients of the transfer functions via L1-norm convex optimization. The proposed algorithm retains good features of subspace methods with improved noise-robustness for sparse systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Identification of sparse FIR systems using a general quantisation scheme
    Godoy, Boris I.
    Agueero, Juan C.
    Carvajal, Rodrigo
    Goodwin, Graham C.
    Yuz, Juan I.
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (04) : 874 - 886
  • [22] Physics enhanced sparse identification of dynamical systems with discontinuous nonlinearities
    Lathourakis, Christos
    Cicirello, Alice
    NONLINEAR DYNAMICS, 2024, 112 (13) : 11237 - 11264
  • [23] MIMO fuzzy identification of building-MR damper systems
    Kim, Yeesock
    Langari, Reza
    Hurlebaus, Stefan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2011, 22 (04) : 185 - 205
  • [24] Identification of MIMO Hammerstein systems using cardinal spline functions
    Chan, Kwong Ho
    Bao, Jie
    Whiten, William J.
    JOURNAL OF PROCESS CONTROL, 2006, 16 (07) : 659 - 670
  • [25] Cauchy Distribution Function-Penalized LMS for Sparse System Identification
    He, ShuMing
    Lin, Yun
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (01) : 470 - 480
  • [26] Cauchy Distribution Function-Penalized LMS for Sparse System Identification
    ShuMing He
    Yun Lin
    Circuits, Systems, and Signal Processing, 2019, 38 : 470 - 480
  • [27] Multidirectional cascade of square MIMO LTI subsystems: Transfer function representation
    Bartecki, Krzysztof
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (09):
  • [28] SPARSE HEAD-RELATED TRANSFER FUNCTION REPRESENTATION WITH SPATIAL ALIASING CANCELLATION
    Alon, David Lou
    Ben-Hur, Zamir
    Rafaely, Boaz
    Mehra, Ravish
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6792 - 6796
  • [29] Identifying MIMO Wiener systems using subspace model identification methods
    Westwick, D
    Verhaegen, M
    SIGNAL PROCESSING, 1996, 52 (02) : 235 - 258
  • [30] Generalized System Identification for Nonlinear MPC of Highly Nonlinear MIMO Systems
    Chee, Ewan
    Wang, Xiaonan
    IFAC PAPERSONLINE, 2021, 54 (03): : 366 - 371