An Integrated Model Based on a Six-Gene Signature Predicts Overall Survival in Patients With Hepatocellular Carcinoma

被引:42
作者
Li, Wenli [1 ,2 ]
Lu, Jianjun [3 ,4 ,5 ]
Ma, Zhanzhong [1 ]
Zhao, Jiafeng [6 ]
Liu, Jun [1 ,5 ]
机构
[1] Shantou Univ, Med Coll, Yue Bei Peoples Hosp, Dept Clin Lab, Shaoguan, Peoples R China
[2] Shantou Univ, Med Coll, Affiliated Yue Bei Peoples Hosp, Dept Reprod Med Ctr, Shaoguan, Peoples R China
[3] Southern Med Univ, Sch Clin Med 2, Guangzhou, Peoples R China
[4] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Med Serv, Guangzhou, Peoples R China
[5] Morning Star Acad Cooperat, Shanghai, Peoples R China
[6] Shantou Univ, Yue Bei Peoples Hosp, Dept Hepatobiliary Surg, Med Coll, Shaoguan, Peoples R China
关键词
hepatocellular carcinoma; overall survival; risk score; mRNA signature; weighted gene co-expression network analysis; GENE-EXPRESSION SIGNATURE; MICRORNA EXPRESSION; RECURRENCE; IDENTIFICATION;
D O I
10.3389/fgene.2019.01323
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background:Nowadays, clinical treatment outcomes of patients with hepatocellular carcinoma (HCC) have been improved. However, due to the complexity of the molecular mechanisms, the recurrence rate and mortality in HCC inpatients are still at a high level. Therefore, there is an urgent need in screening biomarkers of HCC to show therapeutic effects and improve the prognosis. Methods:In this study, we aim to establish a gene signature that can predict the prognosis of HCC patients by downloading and analyzing RNA sequencing data and clinical information from three independent public databases. Firstly, we applied the limma R package to analyze biomarkers by the genetic data and clinical information downloaded from the Gene Expression Omnibus database (GEO), and then used the least absolute shrinkage and selection operator (LASSO) Cox regression and survival analysis to establish a gene signature and a prediction model by data from the Cancer Genome Atlas (TCGA). Besides, messenger RNA (mRNA) and protein expressions of the six-gene signature were explored using Oncomine, Human Protein Atlas (HPA) and the International Cancer Genome Consortium (ICGC). Results:A total of 8,306 differentially expressed genes (DEGs) were obtained between HCC (n= 115) and normal tissues (n= 52). Top 5,000 significant genes were selected and subjected to the weighted correlation network analysis (WGCNA), which constructed nine gene co-expression modules that assign these genes to different modules by cluster dendrogram trees. By analyzing the most significant module (red module), six genes (SQSTM1, AHSA1, VNN2, SMG5, SRXN1, and GLS) were screened by univariate, LASSO, and multivariate Cox regression analysis. By a survival analysis with the HCC data in TCGA, we established a nomogram based on the six-gene signature and multiple clinicopathological features. The six-gene signature was then validated as an independent prognostic factor in independent HCC cohort from ICGC. Receiver operating characteristic (ROC) curve analysis confirmed the predictive capacity of the six-gene signature and nomogram. Besides, overexpression of the six genes at the mRNA and protein levels was validated using Oncomine and HPA, respectively. Conclusion:The predictive six-gene signature and nomograms established in this study can assist clinicians in selecting personalized treatment for patients with HCC.
引用
收藏
页数:15
相关论文
共 35 条
[1]   Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma [J].
Ally, Adrian ;
Balasundaram, Miruna ;
Carlsen, Rebecca ;
Chuah, Eric ;
Clarke, Amanda ;
Dhalla, Noreen ;
Holt, Robert A. ;
Jones, Steven J. M. ;
Lee, Darlene ;
Ma, Yussanne ;
Marra, Marco A. ;
Mayo, Michael ;
Moore, Richard A. ;
Mungall, Andrew J. ;
Schein, Jacqueline E. ;
Sipahimalani, Payal ;
Tam, Angela ;
Thiessen, Nina ;
Cheung, Dorothy ;
Wong, Tina ;
Brooks, Denise ;
Robertson, A. Gordon ;
Bowlby, Reanne ;
Mungall, Karen ;
Sadeghi, Sara ;
Xi, Liu ;
Covington, Kyle ;
Shinbrot, Eve ;
Wheeler, David A. ;
Gibbs, Richard A. ;
Donehower, Lawrence A. ;
Wang, Linghua ;
Bowen, Jay ;
Gastier-Foster, Julie M. ;
Gerken, Mark ;
Helsel, Carmen ;
Leraas, Kristen M. ;
Lichtenberg, Tara M. ;
Ramirez, Nilsa C. ;
Wise, Lisa ;
Zmuda, Erik ;
Gabriel, Stacey B. ;
Meyerson, Matthew ;
Cibulskis, Carrie ;
Murray, Bradley A. ;
Shih, Juliann ;
Beroukhim, Rameen ;
Cherniack, Andrew D. ;
Schumacher, Steven E. ;
Saksena, Gordon .
CELL, 2017, 169 (07) :1327-+
[2]   Identification of metastasis-related microRNAs in hepatocellular carcinoma [J].
Budhu, Anuradha ;
Jia, Hu-Liang ;
Forgues, Marshonna ;
Liu, Chang-Gong ;
Goldsteir, David ;
Lam, Amy ;
Zanetti, Krista A. ;
Ye, Qing-Hai ;
Qin, Lun-Yju ;
Croce, Carlo M. ;
Tang, Zhao-You ;
Wang, Xin Wei .
HEPATOLOGY, 2008, 47 (03) :897-907
[3]   Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment [J].
Budhu, Anuradha ;
Forgues, Marshonna ;
Ye, Qing-Hai ;
Jia, Hu-Liong ;
He, Ping ;
Zanetti, Krista A. ;
Kammula, Udai S. ;
Chen, Yidong ;
Qin, Lun-Xiu ;
Tang, Zhao-You ;
Wang, Xin Wei .
CANCER CELL, 2006, 10 (02) :99-111
[4]   Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer [J].
Coulouarn, Cedric ;
Factor, Valentina M. ;
Thorgeirsson, Snorri S. .
HEPATOLOGY, 2008, 47 (06) :2059-2067
[5]   Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis [J].
El-Serag, Hashem B. ;
Rudolph, Lenhard .
GASTROENTEROLOGY, 2007, 132 (07) :2557-2576
[6]   A gene expression profile for vascular invasion can predict the recurrence after resection of hepatocellular carcinoma: A microarray approach [J].
Ho, Ming-Chih ;
Lin, Jen-Jen ;
Chen, Chiung-Nien ;
Chen, Chaur-Chin ;
Lee, Hsinyu ;
Yang, Ching-Yao ;
Ni, Yen-Hsuan ;
Chang, King-Jen ;
Hsu, Hey-Chi ;
Hsieh, Fon-Jou ;
Lee, Po-Huang .
ANNALS OF SURGICAL ONCOLOGY, 2006, 13 (11) :1474-1484
[7]   Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target [J].
Horvath, S. ;
Zhang, B. ;
Carlson, M. ;
Lu, K. V. ;
Zhu, S. ;
Felciano, R. M. ;
Laurance, M. F. ;
Zhao, W. ;
Qi, S. ;
Chen, Z. ;
Lee, Y. ;
Scheck, A. C. ;
Liau, L. M. ;
Wu, H. ;
Geschwind, D. H. ;
Febbo, P. G. ;
Kornblum, H. I. ;
Cloughesy, T. F. ;
Nelson, S. F. ;
Mischel, P. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (46) :17402-17407
[8]   Prognostic Gene Expression Signature for Patients With Hepatitis C-Related Early-Stage Cirrhosis [J].
Hoshida, Yujin ;
Villanueva, Augusto ;
Sangiovanni, Angelo ;
Sole, Manel ;
Hur, Chin ;
Andersson, Karin L. ;
Chung, Raymond T. ;
Gould, Joshua ;
Kojima, Kensuke ;
Gupta, Supriya ;
Taylor, Bradley ;
Crenshaw, Andrew ;
Gabriel, Stacey ;
Minguez, Beatriz ;
Iavarone, Massimo ;
Friedman, Scott L. ;
Colombo, Massimo ;
Llovet, Josep M. ;
Golub, Todd R. .
GASTROENTEROLOGY, 2013, 144 (05) :1024-1030
[9]   MicroRNA Expression, Survival, and Response to Interferon in Liver Cancer [J].
Ji, Junfang ;
Shi, Jiong ;
Budhu, Anuradha ;
Yu, Zhipeng ;
Forgues, Marshonna ;
Roessler, Stephanie ;
Ambs, Stefan ;
Chen, Yidong ;
Meltzer, Paul S. ;
Croce, Carlo M. ;
Qin, Lun-Xiu ;
Man, Kwan ;
Lo, Chung-Mau ;
Lee, Joyce ;
Ng, Irene O. L. ;
Fan, Jia ;
Tang, Zhao-You ;
Sun, Hui-Chuan ;
Wang, Xin Wei .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 361 (15) :1437-1447
[10]   Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival [J].
Jiang, Jinmai ;
Gusev, Yuriy ;
Aderca, Ileana ;
Mettler, Teresa A. ;
Nagorney, David M. ;
Brackett, Daniel J. ;
Roberts, Lewis R. ;
Schmittgen, Thomas D. .
CLINICAL CANCER RESEARCH, 2008, 14 (02) :419-427