Evaluation of the local structure and electrochemical behavior in the LiCl-KCl-SmCl3 melt

被引:9
|
作者
Zhao, Jia [1 ,2 ]
Liu, Zhaoting [1 ,2 ]
Liang, Wenshuo [1 ,2 ]
Lu, Guimin [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Natl Engn Res Ctr Integrated Utilizat Salt Lake Re, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Joint Int Lab Potassium & Lithium Strateg Resource, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
First principles molecular dynamics; Local structure; Diffusion coefficient; Exchange current density; Activation energy; LICL-KCL; MOLECULAR-DYNAMICS; CATHODIC BEHAVIOR; CO-REDUCTION; CHLORIDES; DENSITY; SM(III);
D O I
10.1016/j.molliq.2022.119818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This present work evaluates the local structure and electrochemical behavior of the LiCl-KCl-SmCl3 melt to facilitate the efficient reprocessing of spent nuclear fuel (SNF). At 723 K, the radial distribution function, coordination number, and structure factors were adopted to understand the local structure of LiCl-KCl and LiCl-KCl-SmCl3 based on first-principles molecular dynamics (FPMD) simulation. We found the SmCl3 slight effect on LiCl-KCl melts in short-range order and its influence on the distribution of Li-Li intermediate-range order. Moreover, the diffusion coefficient of Sm(III) 2.012 x 10(-5) cm(2)/s in LiCl-KCl melts was determined by analyzing the mean square displacement. The electrochemical behavior of Sm(III) was conducted in the temperature range from 673 K to 823 K by a series of electrochemical meth-ods. According to the theory of Matsuda and Ayabe, the Sm(III) + e- = Sm(II) is a quasi-reversible process. The diffusion coefficient of Sm(III) was measured by the chronoamperometry method, which verified the credibility of the FPMD simulation. Furthermore, this work explored the exchange current density of Sm (III)/Sm(II), whose value is between 0.826 x 10(-3) and 2.383 x 10(-3) A.cm(-2), by the linear polarization. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Electrochemical formation of Sm-Ni alloy films in a molten LiCl-KCl-SmCl3 system
    Iida, T
    Nohira, T
    Ito, Y
    ELECTROCHIMICA ACTA, 2001, 46 (16) : 2537 - 2544
  • [2] Electrochemical formation of Sm-Co alloy films by Li codeposition method in a molten LiCl-KCl-SMCl3 system
    Iida, T
    Nohira, T
    Ito, Y
    ELECTROCHIMICA ACTA, 2003, 48 (07) : 901 - 906
  • [3] Electrochemical Behavior of Zirconium in LiCl-KCl Eutectic Melt
    Maltsev, Dmitry S.
    Volkovich, Vladimir A.
    Ivanov, Alexander B.
    Ryzhov, Alexander A.
    Strepetov, Kirill E.
    Kozlova, Anastasia A.
    Soldatova, Maria N.
    PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2018), 2018, 2015
  • [4] ELECTROCHEMICAL-BEHAVIOR OF TI-3+ IN LICL-KCL EUTECTIC MELT
    MATSUMOTO, K
    NUMATA, H
    OHNO, I
    HARUYAMA, S
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1992, 56 (04) : 399 - 405
  • [5] ELECTROCHEMICAL-BEHAVIOR OF SULFIDE INTERMEDIATES IN AN LICL-KCL MELT
    MORACHEVSKII, AG
    ZAGOSKIN, NN
    SHISHKINA, SV
    DEMIDOV, AI
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1990, 63 (08): : 1676 - 1678
  • [6] Electrochemical behavior of hydride ion in a LiCl-KCl eutectic melt
    Nohira, T
    Ito, Y
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (05) : E159 - E165
  • [7] Electrochemical behavior of Nd3+ and Ho3+ in LiCl-KCl eutectic melt
    Zhao, MS
    Lu, XP
    Liang, J
    JOURNAL OF RARE EARTHS, 1997, 15 (02) : 103 - 106
  • [8] Electrochemical Behavior of Nd3+ and Ho3+ in LiCl-KCl Eutectic Melt
    赵敏寿
    吕翔平
    梁金
    Journal of Rare Earths, 1997, (02) : 24 - 27
  • [9] Corrosion Electrochemical Behavior of Nickel in the LiCl–KCl Melt Containing Lanthanum Trichloride
    E. A. Karfidov
    E. V. Nikitina
    Russian Metallurgy (Metally), 2019, 2019 : 820 - 824
  • [10] Uranium electrochemical behavior and properties in LiCl-KCl-CsCl eutectic melt
    Maltsev, Dmitry S.
    Volkovich, Vladimir A.
    Vladykin, Evgeny N.
    Polovov, Ilya B.
    Vasin, Boris D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247