A note on (σ,τ)-derivations in prime rings

被引:0
作者
Aydin, Neset [1 ]
机构
[1] Canakkale Onsekiz Mart Univ, Fac Arts & Sci, Dept Math, Canakkale, Turkey
关键词
prime rings; (sigma; tau)-derivations; ideals; commutativity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a 2-torsion free prime ring and let sigma, tau be automorphisms of R. For any x, y epsilon R, set [x, y](sigma,tau) = x sigma(y) - tau(y)x. Suppose that d is a (sigma, tau)-derivation defined on R. In the present paper it is shown that (i) if d is a nonzero (sigma, tau)-derivation andh is a nonzero derivation of R such that dh(R) (subset of) over dot C sigma,tau then R is commutative. (ii) if R satisfies [d(x), x](sigma,tau) epsilon C-sigma,C-tau, then either d = 0 or R is commutative. (iii) if I is a nonzero ideal of R such that d(xy) = d(yx) for all x, y epsilon I, then R is commutative.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [31] NOTES ON ( sigma, tau)-DERIVATIONS OF LIE IDEALS IN PRIME RINGS
    Goelbasi, Oeznur
    Oguz, Seda
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (03): : 441 - 482
  • [32] Notes on Generalized Derivations and Partial Generalized Automorphisms in Prime Rings
    Huang, Shuliang
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (04): : 891 - 898
  • [33] On multiplicative (generalized)-derivations in prime and semiprime rings
    Dhara, Basudeb
    Ali, Shakir
    AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) : 65 - 79
  • [34] Some results on generalized (σ, τ)-derivations in prime rings
    Güven E.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 559 - 566
  • [35] ON (sigma, tau)-HIGHER DERIVATIONS IN PRIME RINGS
    Ashraf, Mohammad
    Khan, Almas
    Haetinger, Claus
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2010, 8 : 65 - 79
  • [36] Generalized derivations on Lie ideals in prime rings
    Golbasi, Oznur
    Koc, Emine
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (01) : 23 - 28
  • [37] Action of higher derivations on prime rings with involution
    Ali, Shakir
    Alali, Amal S.
    Varshney, Vaishali
    Rafiquee, Naira Noor
    GEORGIAN MATHEMATICAL JOURNAL, 2025,
  • [38] On generalized (α,β)-derivations and Lie ideals of prime rings
    Sandhu, Gurninder S.
    Ali, Shakir
    Boua, Abdelkarim
    Kumar, Deepak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 499 - 513
  • [39] On derivations and commutativity in prime near-rings
    Ashraf, Mohammed
    Boua, Abdelkarim
    Raji, Abderrahmane
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2014, 8 (03): : 301 - 306
  • [40] Power cocentralizing generalized derivations on prime rings
    Vincenzo De Filippis
    Proceedings - Mathematical Sciences, 2010, 120 : 285 - 297