A note on (σ,τ)-derivations in prime rings

被引:0
作者
Aydin, Neset [1 ]
机构
[1] Canakkale Onsekiz Mart Univ, Fac Arts & Sci, Dept Math, Canakkale, Turkey
关键词
prime rings; (sigma; tau)-derivations; ideals; commutativity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a 2-torsion free prime ring and let sigma, tau be automorphisms of R. For any x, y epsilon R, set [x, y](sigma,tau) = x sigma(y) - tau(y)x. Suppose that d is a (sigma, tau)-derivation defined on R. In the present paper it is shown that (i) if d is a nonzero (sigma, tau)-derivation andh is a nonzero derivation of R such that dh(R) (subset of) over dot C sigma,tau then R is commutative. (ii) if R satisfies [d(x), x](sigma,tau) epsilon C-sigma,C-tau, then either d = 0 or R is commutative. (iii) if I is a nonzero ideal of R such that d(xy) = d(yx) for all x, y epsilon I, then R is commutative.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [21] NILPOTENCY OF DERIVATIONS IN PRIME-RINGS
    JENSEN, DW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (09) : 2633 - 2636
  • [22] ON GENERALIZED DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Huang, Shuliang
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 771 - 776
  • [23] CHARACTERIZATION OF LIE DERIVATIONS ON PRIME RINGS
    Qi, Xiaofei
    Hou, Jinchuan
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3824 - 3835
  • [24] ON (sigma, tau)-DERIVATIONS OF PRIME RINGS
    Kaya, K.
    Guven, E.
    Soyturk, M.
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2006, 13 (03): : 189 - 195
  • [25] Notes on the Higher Derivations of Prime Rings
    Atteya, Mehsin Jabel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (04): : 61 - 68
  • [26] NOTES ON GENERALIZED DERIVATIONS OF *-PRIME RINGS
    Koc, Emine
    Rehman, Nadeem Ur
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 117 - 123
  • [27] GENERALIZED DERIVATIONS ON PRIME RINGS SATISFYING CERTAIN IDENTITIES
    Al-Omary, Radwan Mohammed
    Nauman, Syed Khalid
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (02): : 229 - 238
  • [28] ANNIHILATOR CONDITIONS OF MULTIPLICATIVE REVERSE DERIVATIONS ON PRIME RINGS
    Sandhu, Gurninder S.
    Kumar, Deepak
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2019, 25 : 87 - 103
  • [29] A characterization of derivations in prime rings with involution
    Ali, Shakir
    Mozumder, M. Rahman
    Abbasi, Adnan
    Khan, M. Salahuddin
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (03): : 1138 - 1148
  • [30] Generalized (σ, τ) higher derivations in prime rings
    Ashraf, Mohammad
    Khan, Almas
    SPRINGERPLUS, 2012, 1