Feature selection for multiclass support vector machines

被引:3
作者
Aazi, F. Z. [1 ,2 ]
Abdesselam, R. [3 ]
Achchab, B. [1 ]
Elouardighi, A. [4 ]
机构
[1] Hassan 1st Univ, EST Berrechid, LAMSAD Lab, Casablanca, Morocco
[2] Lumiere Lyon 2 Univ, ERIC Lab, Lyon, France
[3] Lumiere Lyon 2 Univ, COACTIS Lab, ISH, Lyon, France
[4] Hassan 1st Univ, Lab LM2CE, FSJES, Settat, Morocco
关键词
Discrimination; Multiclass Support Vectors Machines (MSVM); variables selection; hard margin MSVM models; multiclass radius-margin bound; VARIABLE SELECTION; CANCER CLASSIFICATION; GENE SELECTION; SVM-RFE; PREDICTION;
D O I
10.3233/AIC-160707
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present and evaluate a novel method for feature selection for Multiclass Support Vector Machines (MSVM). It consists in determining the relevant features using an upper bound of generalization error proper to the multiclass case called the multiclass radius margin bound. A score derived from this bound will rank the variables in order of relevance, then, forward method will be used to select the optimal subset. The experiments are firstly conducted on simulated data to test the ability of the score to give the correct order of relevance of variables and the ability of the proposed method to find the subset giving a better error rate than the case where all features are used. Afterward, four real datasets publicly available will be used and the results will be compared with those of other methods of variable selection by MSVM.
引用
收藏
页码:583 / 593
页数:11
相关论文
共 40 条
[11]  
Guermeur Y., 2007, SVM MULTICLASSES THE
[12]  
Guermeur Y, 2011, INFORMATICA-LITHUAN, V22, P73
[13]  
Guo JA, 2011, STAT INTERFACE, V4, P19
[14]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[15]  
Guyon I., 2003, Journal of Machine Learning Research, V3, P1157, DOI 10.1162/153244303322753616
[16]   Asymptotic behaviors of support vector machines with Gaussian kernel [J].
Keerthi, SS ;
Lin, CJ .
NEURAL COMPUTATION, 2003, 15 (07) :1667-1689
[17]   Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J].
Khan, J ;
Wei, JS ;
Ringnér, M ;
Saal, LH ;
Ladanyi, M ;
Westermann, F ;
Berthold, F ;
Schwab, M ;
Antonescu, CR ;
Peterson, C ;
Meltzer, PS .
NATURE MEDICINE, 2001, 7 (06) :673-679
[18]   Wrappers for feature subset selection [J].
Kohavi, R ;
John, GH .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :273-324
[19]  
Lauer F, 2011, J MACH LEARN RES, V12, P2293
[20]   Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data [J].
Lee, YK ;
Lin, Y ;
Wahba, G .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) :67-81