Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process

被引:108
|
作者
Scialdone, Onofrio [1 ]
Galia, Alessandro [1 ]
Gattuso, Carolina [1 ]
Sabatino, Simona [1 ]
Schiavo, Benedetto [1 ]
机构
[1] Univ Palermo, Dipartimento Ingn Chim, Gest, Informat,Meccan, I-90128 Palermo, Italy
关键词
Wastewater treatment; Air pressure; AOPs; Electro-Fenton; Acid orange 7; Hydrogen peroxide; Compact graphite; ACID ORANGE 7; HYDROGEN-PEROXIDE; WASTE-WATER; ELECTROCHEMICAL OXIDATION; DESTRUCTION; DEGRADATION; REMOVAL; DECOLORIZATION; HYDROXYLATION; WASTEWATERS;
D O I
10.1016/j.electacta.2015.09.109
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electro-generation of H2O2 and the abatement of the model organic pollutant Acid Orange 7 (AO7) in water by an electro-Fenton process were performed under moderate air pressures (up to 11 bar) for the first time to our knowledge. An increase of the pressure gave rise to a drastic enhancement of the concentration of hydrogen peroxide. In systems pressurized with air at 11 bar, the electro reduction of oxygen at a graphite cathode gave rise to a concentration of H2O2 of about 12 mM, about one order of magnitude higher than that achieved at atmospheric pressure. This result is attributed to the mass transfer intensification induced by the higher local concentration of molecular oxygen dissolved in the aqueous phase. Similarly, for electro-Fenton, a drastic increase of the TOC abatement was achieved upon increasing the air pressure. The effect of the current was also investigated in detail. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:775 / 780
页数:6
相关论文
共 50 条
  • [41] Amorphous cobalt sulphide introduced atomic H*/H+ for H2O2 electrosynthesis and enhanced Fe(II) regeneration in electro-Fenton process at macroneutral pH
    Chen, Zhenglin
    Liu, Guangzhen
    Yu, Shuiping
    Yang, Lixia
    Zheng, Lingyi
    Wei, Zhihui
    Luo, Shenglian
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [42] Anthraquinone (AQS)/polyaniline (PANI) modified carbon felt (CF) cathode for selective H2O2 generation and efficient pollutant removal in electro-Fenton
    Gao, Ying
    Zhu, Weihuang
    Li, Yaqi
    Zhang, Qingyu
    Chen, Haonan
    Zhang, Jianfeng
    Huang, Tinglin
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 304
  • [43] Comparative Performance of Ten Electrodes in Electro-Fenton Process for Removal of Organic Pollutants from Water
    Oturan, Nihal
    Bo, Jiang
    Trellu, Clement
    Oturan, Mehmet A.
    CHEMELECTROCHEM, 2021, 8 (17) : 3294 - 3303
  • [44] Cu-catalytic generation of reactive oxidizing species from H2 and O2 produced by water electrolysis for electro-fenton degradation of organic contaminants
    Xu, Xiaofeng
    Liao, Peng
    Yuan, Songhu
    Tong, Man
    Luo, Mingsen
    Xie, Wenjing
    CHEMICAL ENGINEERING JOURNAL, 2013, 233 : 117 - 123
  • [45] Establishment of a reagent-free three-dimensional electro-Fenton system for high H2O2 production and efficient degradation of Roxarsone
    Peng, Mengling
    He, Jiahong
    An, Jibin
    Xie, Taiping
    Zhao, Tiantao
    Li, Guoqiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [46] Kapok fiber derived biochar as an efficient electro-catalyst for H2O2 in-situ generation in an electro-Fenton system for sulfamethoxazole degradation
    Wang, Wei
    Li, Wenchao
    Li, Hongyi
    Xu, Chenchen
    Zhao, Gang
    Ren, Yueping
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 50
  • [47] A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced electrogeneration of H2O2 and cycle of Fe3+/Fe2+
    Li, Dong
    Zheng, Tong
    Liu, Yulei
    Hou, Ding
    Yao, Keyi Kang
    Zhang, Wei
    Song, Haoran
    He, Haiyang
    Shi, Wei
    Wang, Lu
    Ma, Jun
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 396
  • [48] A carbon felt cathode modified by acidic oxidised carbon nanotubes for the high H2O2 generation and its application in electro-Fenton
    Gao, Ying
    Xie, Fangshu
    Bai, Huiling
    Zeng, Li
    Zhang, Jingbin
    Liu, Meiyu
    Zhu, Weihuang
    ENVIRONMENTAL TECHNOLOGY, 2024, 45 (09) : 1669 - 1682
  • [49] A three-dimensional gas diffusion electrode without external aeration for producing H2O2 and eliminating amoxicillin using electro-Fenton process
    Sun, Xiuping
    Lv, Jiajing
    Yan, Zihao
    Sun, Zhirong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):
  • [50] Degradation of organic pollutants by visible light synergistic electro-Fenton oxidation process
    Wang ShuLian
    Wang Qi
    Fang YanFen
    Huang YingPing
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (06) : 813 - 820