In the late Pleistocene, 97 genera of large animals went extinct, concentrated in the Americas and Australia(1). These extinctions had significant effects on ecosystem structure(2), seed dispersal(3) and land surface albedo(4). However, the impact of this dramatic extinction on ecosystem nutrient biogeochemistry, through the lateral transport of dung and bodies, has never been explored. Here we analyse this process using a novel mathematical framework that analyses this lateral transport as a diffusion-like process, and we demonstrate that large animals play a disproportionately large role in the horizontal transfer of nutrients across landscapes. For example, we estimate that the extinction of the Amazonian megafauna decreased the lateral flux of the limiting nutrient phosphorus by more than 98%, with similar, though less extreme, decreases in all continents outside of Africa. This resulted in strong decreases in phosphorus availability in eastern Amazonia away from fertile floodplains, a decline which may still be ongoing. The current P limitation in the Amazon basin may be partially a relic of an ecosystem without the functional connectivity it once had. We argue that the Pleistocene megafauna extinctions resulted in large and ongoing disruptions to terrestrial biogeochemical cycling at continental scales and increased nutrient heterogeneity globally.