Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum

被引:23
作者
Perez-Lopez, Paula [1 ]
Gonzalez-Garcia, Sara [1 ]
Allewaert, Celine [2 ]
Verween, Annick [2 ]
Murray, Patrick [3 ]
Feijoo, Gumersindo [1 ]
Teresa Moreira, Ma [1 ]
机构
[1] Univ Santiago de Compostela, Inst Technol, Dept Chem Engn, Santiago De Compostela 15782, Galicia, Spain
[2] Univ Ghent, Lab Protistol & Aquat Ecol, B-9000 Ghent, Belgium
[3] Limerick Inst Technol, Shannon Appl Biotechnol Ctr Shannon ABC, Limerick, Ireland
关键词
Environmental assessment; Marine eukaryotic microalgae; Life cycle assessment; Life cycle inventory (LCI); PUFAs; EPA; LIFE-CYCLE ASSESSMENT; POLYUNSATURATED FATTY-ACIDS; BIODIESEL PRODUCTION; MIXOTROPHIC GROWTH; EXTRACTION; MICROALGAE; BIOMASS; RECOVERY; ESTERS;
D O I
10.1016/j.scitotenv.2013.07.105
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polyunsaturated fatty acids (PUFAs) play an important role in human health. Due to the increased market demand, the production of PUFAs from potential alternative sources such as microalgae is receiving increased interest. The aim of this study was to perform a life cycle assessment (LCA) of the biotechnological production of eicosapentaenoic acid (EPA) from the marine diatom Phaeodactylum tricornutum, followed by the identification of avenues to improve its environmental profile. The LCA tackles two production schemes of P. tricornutum PUFAs with an EPA content of 36%: lab and pilot scales. The results at lab scale show that both the electricity requirements and the production of the extraction agent (chloroform) have significant influence on the life cycle environmental performance of microalgal EPA production. An alternative method based on hexane was proposed to replace chloroform and environmental benefits were identified. Regarding the production of EPA at pilot scale, three main environmental factors were identified: the production of the nitrogen source required for microalgae growing, the transport activities and electricity requirements. Improvement alternatives were proposed and discussed concerning: a) the use of nitrogen based fertilizers, b) the valorization of the residual algal paste as soil conditioner and, c) the anaerobic digestion of the residual algal paste for bioenergy production. Encouraging environmental benefits could be achieved if sodium nitrate was substituted by urea, calcium nitrate or ammonium nitrate, regardless the category under assessment. In contrast, minor improvement was found when valorizing the residual algal paste as mineral fertilizer, due to its overall low content in N and P. Concerning the biogas production from the anaerobic digestion, the improvement on the environmental profile was also limited due to the discrepancy between the potential energy production from the algal paste and the high electricity requirements in the culturing and extraction stages. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:991 / 1002
页数:12
相关论文
共 51 条
[1]  
Althaus HJ, 2007, Ecoinvent report No. 8, v2.0 EMPA
[2]  
[Anonymous], 1897, FVERSIGT KONGLIGA VE
[3]   Utilization of macro-algae for enhanced CO2 fixation and biofuels production:: Development of a computing software for an LCA study [J].
Aresta, M ;
Dibenedetto, A ;
Barberio, G .
FUEL PROCESSING TECHNOLOGY, 2005, 86 (14-15) :1679-1693
[4]   A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil [J].
Belarbi, EH ;
Molina, E ;
Chisti, Y .
ENZYME AND MICROBIAL TECHNOLOGY, 2000, 26 (07) :516-529
[5]   Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products [J].
Brennan, Liam ;
Owende, Philip .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :557-577
[6]   Combinatorial Life Cycle Assessment to Inform Process Design of Industrial Production of Algal Biodiesel [J].
Brentner, Laura B. ;
Eckelman, Matthew J. ;
Zimmerman, Julie B. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (16) :7060-7067
[7]  
Brunner G, 1998, US Patent, Patent No. [5,777,141, 5777141]
[8]   Life cycle assessment of biodiesel production from microalgae in ponds [J].
Campbell, Peter K. ;
Beer, Tom ;
Batten, David .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :50-56
[9]  
Cerón García MC, 2006, J MICROBIOL BIOTECHN, V16, P689
[10]   Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks [J].
Clarens, Andres F. ;
Resurreccion, Eleazer P. ;
White, Mark A. ;
Colosi, Lisa M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (05) :1813-1819