LOW REGULARITY WELL-POSEDNESS FOR THE YANG-MILLS SYSTEM IN FOURIER-LEBESGUE SPACES

被引:1
作者
Pecher, Hartmut [1 ]
机构
[1] Berg Univ Wuppertal, Fak Math & Nat Wissensch, D-42119 Wuppertal, Germany
关键词
Yang-Mills; local well-posedness; Lorenz gauge; ENERGY SOLUTIONS; EQUATIONS;
D O I
10.1137/19M1299530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for the Yang-Mills system in three space dimensions with data in Fourier-Lebesgue spaces (H) over cap (s,r), 1 < r <= 2 , is shown to be locally well-posed, where we have to assume only almost optimal minimal regularity for the data with respect to scaling as r -> 1 . This is true despite the fact that no null condition is known for one of the critical quadratic nonlinearities, which by now prevented the corresponding result in the classical case r = 2 with data in standard Sobolev spaces.
引用
收藏
页码:3131 / 3148
页数:18
相关论文
共 18 条
[1]  
D'Ancona P, 2012, T AM MATH SOC, V364, P31
[2]   Bilinear space-time estimates for homogeneous wave equations [J].
Foschi, D ;
Klainerman, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (02) :211-274
[3]   ALMOST CRITICAL WELL-POSEDNESS FOR NONLINEAR WAVE EQUATIONS WITH Qμν NULL FORMS IN 2D [J].
Grigoryan, Viktor ;
Nahmod, Andrea R. .
MATHEMATICAL RESEARCH LETTERS, 2014, 21 (02) :313-332
[4]   ON THE WAVE EQUATION WITH QUADRATIC NONLINEARITIES IN THREE SPACE DIMENSIONS [J].
Gruenrock, Axel .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (01) :1-8
[5]  
Grünrock A, 2004, INT MATH RES NOTICES, V2004, P3287
[6]  
Grunrock A, 2009, T AM MATH SOC, V361, P5681
[7]   Bilinear estimates and applications to nonlinear wave equations [J].
Klainerman, S ;
Selberg, S .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (02) :223-295
[8]   FINITE-ENERGY SOLUTIONS OF THE YANG-MILLS EQUATIONS IN R(3+1) [J].
KLAINERMAN, S ;
MACHEDON, M .
ANNALS OF MATHEMATICS, 1995, 142 (01) :39-119
[9]   On the optimal local regularity for the Yang-Mills equations in R4+1 [J].
Klainerman, S ;
Tataru, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :93-116
[10]   Global well-posedness for the Yang-Mills equation in 4+1 dimensions. Small energy [J].
Krieger, Joachim ;
Tataru, Daniel .
ANNALS OF MATHEMATICS, 2017, 185 (03) :831-893