An infinite dimensional central limit theorem for correlated martingales

被引:0
作者
Grigorescu, I [1 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL 33146 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2004年 / 40卷 / 02期
关键词
Gaussian random field; fluctuations from hydrodynamic limit; central limit theorem;
D O I
10.1016/j.anihpb.2003.03.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper derives a functional central limit theorem for the empirical distributions of a system of strongly correlated continuous martingales at the level of the full trajectory space. We provide a general class of functionals for which the weak convergence to a centered Gaussian random field takes place. An explicit formula for the covariance is established and a characterization of the limit is given in terms of an inductive system of SPDEs. We also show a density theorem for a Sobolev-type class of functionals on the space of continuous functions. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:167 / 196
页数:30
相关论文
共 16 条
[1]  
[Anonymous], 1999, SCALING LIMITS INTER, DOI DOI 10.1007/978-3-662-03752-2
[2]  
[Anonymous], 1998, GAUSSIAN MEASURES
[3]   FLUCTUATIONS OF ONE-DIMENSIONAL GINZBURG-LANDAU MODELS IN NONEQUILIBRIUM [J].
CHANG, CC ;
YAU, HT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (02) :209-234
[4]  
Dunford N. J., 1988, Linear operators, part 1: General theory
[5]   Equilibrium fluctuations for zero range processes in random environment [J].
Gielis, G ;
Koukkous, A ;
Landim, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 77 (02) :187-205
[6]  
GRIGORESCU I, 2000, FIELDS I COMMUN, V27, P83
[7]  
Grigorescu L, 1999, ANN PROBAB, V27, P1208
[8]   CENTRAL LIMIT PHENOMENA OF VARIOUS INTERACTING SYSTEMS [J].
HOLLEY, R ;
STROOCK, DW .
ANNALS OF MATHEMATICS, 1979, 110 (02) :333-393
[9]  
Ikeda N., 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720