Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?

被引:21
作者
de la Torre-Gamarra, Carmen [1 ]
Appetecchi, Giovanni Battista [2 ]
Ulissi, Ulderico [3 ,4 ]
Varzi, Alberto [3 ,4 ]
Varez, Alejandro [1 ]
Passerini, Stefano [3 ,4 ]
机构
[1] Univ Carlos III Madrid, Dept Mat Sci & Engn, Avda Univ 30, Leganes 28911, Spain
[2] Agcy New Technol Energy & Sustainable Econ Dev, ENEA, Dept Sustainabil, Via Anguillarese 301, I-00123 Rome, Italy
[3] Karlsruhe Inst Technol, Helmholtz Inst Ulm, Helmholtzstr 11, D-89081 Ulm, Germany
[4] Karlsruhe Inst Technol, POB 3640, D-76021 Eggenstein Leopoldshafen, Germany
关键词
Hybrid electrolytes; Ceramic conductors; NASICON; Ionic liquids; HIGH-POWER; LITHIUM; NASICON; CONDUCTIVITY; CHALLENGES; TRANSPORT; BEHAVIOR; ISSUES; LICOO2; NA;
D O I
10.1016/j.jpowsour.2017.12.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.
引用
收藏
页码:157 / 163
页数:7
相关论文
共 42 条
  • [1] Diagnostic examination of thermally abused high-power lithium-ion cells
    Abraham, D. P.
    Roth, E. P.
    Kostecki, R.
    McCarthy, K.
    MacLaren, S.
    Doughty, D. H.
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (01) : 648 - 657
  • [2] DEPENDENCE OF THE PROPERTIES OF NASICONS ON THEIR COMPOSITION AND PROCESSING
    AHMAD, A
    WHEAT, TA
    KURIAKOSE, AK
    CANADAY, JD
    MCDONALD, AG
    [J]. SOLID STATE IONICS, 1987, 24 (01) : 89 - 97
  • [3] A wide-ranging review on Nasicon type materials
    Anantharamulu, N.
    Rao, K. Koteswara
    Rambabu, G.
    Kumar, B. Vijaya
    Radha, Velchuri
    Vithal, M.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2011, 46 (09) : 2821 - 2837
  • [4] Chemical-physical properties of bis(perfluoroalkylsulfonyl)imide-based ionic liquids
    Appetecchi, Giovanni B.
    Montanino, Maria
    Carewska, Maria
    Moreno, Margherita
    Alessandrini, Fabrizio
    Passerini, Stefano
    [J]. ELECTROCHIMICA ACTA, 2011, 56 (03) : 1300 - 1307
  • [5] A Critical Review of Thermal Issues in Lithium-Ion Batteries
    Bandhauer, Todd M.
    Garimella, Srinivas
    Fuller, Thomas F.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : R1 - R25
  • [6] LiZnSO4F Made in an Ionic Liquid: A Ceramic Electrolyte Composite for Solid-State Lithium Batteries
    Barpanda, Prabeer
    Chotard, Jean-Noel
    Delacourt, Charles
    Reynaud, Marine
    Filinchuk, Yaroslav
    Armand, Michel
    Deschamps, Michael
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (11) : 2526 - 2531
  • [7] NEUTRON POWDER DIFFRACTION STUDY AND IONIC-CONDUCTIVITY OF NA2ZR2SIP2O12 AND NA3ZR2SI2PO12
    BAUR, WH
    DYGAS, JR
    WHITMORE, DH
    FABER, J
    [J]. SOLID STATE IONICS, 1986, 18-9 : 935 - 943
  • [8] Conductivity measurements on nasicon and nasicon-modified materials
    Bohnke, O
    Ronchetti, S
    Mazza, D
    [J]. SOLID STATE IONICS, 1999, 122 (1-4) : 127 - 136
  • [9] CRYSTAL-STRUCTURE OF THE TRUE NASICON - NA3ZR2SI2PO12
    BOILOT, JP
    COLLIN, G
    COLOMBAN, P
    [J]. MATERIALS RESEARCH BULLETIN, 1987, 22 (05) : 669 - 676
  • [10] Conway B E, 1999, ELECTROCHEMICAL SUPE