Genetic and molecular analysis of synaptic vesicle recycling in Drosophila

被引:13
作者
Zhang, B [1 ]
机构
[1] Univ Texas, Neurobiol Sect, Austin, TX 78712 USA
[2] Univ Texas, Sect Mol Cell & Dev Biol, Austin, TX 78712 USA
[3] Univ Texas, Inst Neurosci, Austin, TX 78712 USA
[4] Univ Texas, Inst Mol & Cellular Biol, Austin, TX 78712 USA
来源
JOURNAL OF NEUROCYTOLOGY | 2003年 / 32卷 / 5-8期
关键词
D O I
10.1023/B:NEUR.0000020611.44254.86
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Following exocytosis, one of the major presynaptic events is replenishing synaptic vesicles (SVs) to ensure the possibility of continuous synaptic transmission. The nerve terminal is thought to recycle SVs through clathrin-mediated endocytosis and by a clathrin-independent pathway called 'kiss and run'. This review highlights the use of the genetic model organism, the fruit fly (Drosophila melanogaster), in dissecting the molecular mechanisms of clathrin-mediated endocytosis in recycling SVs at neuromuscular junctions (NMJs). Analyses of endocytotic mutants in Drosophila indicate that clathrin-mediated endocytosis may be essential for SV recycling, including a putative fast recycling mechanism uncovered recently. Further, a rather complex picture begins to emerge suggesting that clathrin-mediated endocytosis involves several sequential steps mediated by a large number of proteins. Finally, these studies also reveal that SV proteins may be selectively retrieved into nascent SVs by clathrin accessory proteins and defects in protein retrieval have significant impacts on synaptic transmission. Following the completion of the Drosophila Genome Project and the development of gene targeting and RNAi approaches, genetic studies in Drosophila have become increasingly efficient. Hence, Drosophila is expected to continue to serve as an important model organism for studies of SV recycling.
引用
收藏
页码:567 / 589
页数:23
相关论文
共 194 条
[11]   OPTICAL ANALYSIS OF SYNAPTIC VESICLE RECYCLING AT THE FROG NEUROMUSCULAR-JUNCTION [J].
BETZ, WJ ;
BEWICK, GS .
SCIENCE, 1992, 255 (5041) :200-203
[12]   DISSOCIATION OF CLATHRIN COATS COUPLED TO THE HYDROLYSIS OF ATP - ROLE OF AN UNCOATING ATPASE [J].
BRAELL, WA ;
SCHLOSSMAN, DM ;
SCHMID, SL ;
ROTHMAN, JE .
JOURNAL OF CELL BIOLOGY, 1984, 99 (02) :734-741
[13]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[14]   ABSENCE OF SYNAPTOTAGMIN DISRUPTS EXCITATION-SECRETION COUPLING DURING SYNAPTIC TRANSMISSION [J].
BROADIE, K ;
BELLEN, HJ ;
DIANTONIO, A ;
LITTLETON, JT ;
SCHWARZ, TL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (22) :10727-10731
[15]   Sequential steps in clathrin-mediated synaptic vesicle endocytosis [J].
Brodin, L ;
Löw, P ;
Shupliakov, O .
CURRENT OPINION IN NEUROBIOLOGY, 2000, 10 (03) :312-320
[16]   Biological basket weaving: Formation and function of clathrin-coated vesicles [J].
Brodsky, FM ;
Chen, CY ;
Knuehl, C ;
Towler, MC ;
Wakeham, DE .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2001, 17 :517-568
[17]   Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo [J].
Bronk, P ;
Wenniger, JJ ;
Dawson-Scully, K ;
Guo, XF ;
Hong, S ;
Atwood, HL ;
Zinsmaier, KE .
NEURON, 2001, 30 (02) :475-488
[18]  
BUDNIK V, 1999, INT REV NEUROBIOLOGY, V43
[19]   Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of Ranvier in brain and around T tubules in skeletal muscle [J].
Butler, MH ;
David, C ;
Ochoa, GC ;
Freyberg, Z ;
Daniell, L ;
Grabs, D ;
Cremona, O ;
DeCamilli, P .
JOURNAL OF CELL BIOLOGY, 1997, 137 (06) :1355-1367
[20]  
Cadavid ALM, 2000, DEVELOPMENT, V127, P1727