Contractivity for Smoluchowski's coagulation equation with solvable kernels

被引:0
|
作者
Canizo, Jose A. [1 ]
Lods, Bertrand [2 ,3 ]
Throm, Sebastian [1 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, Ave Fuentenueva S-N, Granada 18071, Spain
[2] Univ Torino, Dept ESOMAS, Corso Unione Sovietica 218 Bis, I-10134 Turin, Italy
[3] Coll Carlo Alberto, Corso Unione Sovietica 218 Bis, I-10134 Turin, Italy
关键词
35Q70; 35Q82; 35R09; 82C05 (primary); SELF-SIMILARITY; CONVERGENCE; GELATION;
D O I
10.1112/blms.12417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Smoluchowski coagulation equation with the solvable kernelsK(x,y)equal to 2,x+yorxyis contractive in suitable Laplace norms. In particular, this proves exponential convergence to a self-similar profile in these norms. These results are parallel to similar properties of Maxwell models for Boltzmann-type equations, and extend already existing results on exponential convergence to self-similarity for Smoluchowski's coagulation equation.
引用
收藏
页码:248 / 258
页数:11
相关论文
共 50 条