Qualitative robustness of estimators on stochastic processes

被引:2
|
作者
Strohriegl, Katharina [1 ]
Hable, Robert [2 ]
机构
[1] Univ Bayreuth, Math Inst, Bayreuth, Germany
[2] Tech Hsch Deggendorf, Technol Campus Grafenau, Deggendorf, Germany
关键词
Qualitative robustness; Stochastic process; Statistical functional; Weak dependence; CONSISTENCY;
D O I
10.1007/s00184-016-0582-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A lot of statistical methods originally designed for independent and identically distributed (i.i.d.) data are also successfully used for dependent observations. Still most theoretical investigations on robustness assume i.i.d. pairs of random variables. We examine an important property of statistical estimators-the qualitative robustness in the case of observations which do not fulfill the i.i.d. assumption. In the i.i.d. case qualitative robustness of a sequence of estimators is, according to Hampel (Ann Math Stat 42: 1887-1896, 1971), ensured by continuity of the corresponding statistical functional. A similar result for the non-i.i.d. case is shown in this article. Continuity of the corresponding statistical functional still ensures qualitative robustness of the estimator as long as the data generating process satisfies a certain convergence condition on its empirical measure. Examples for processes providing such a convergence condition, including certain Markov chains or mixing processes, are given as well as examples for qualitatively robust estimators in the non-i.i.d. case.
引用
收藏
页码:895 / 917
页数:23
相关论文
共 50 条
  • [31] Comparative and qualitative robustness for law-invariant risk measures
    Kraetschmer, Volker
    Schied, Alexander
    Zaehle, Henryk
    FINANCE AND STOCHASTICS, 2014, 18 (02) : 271 - 295
  • [32] Conditional likelihood estimators for hidden Markov models and stochastic volatility models
    Genon-Catalot, V
    Jeantheau, T
    Laredo, C
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (02) : 297 - 316
  • [33] Comparative and qualitative robustness for law-invariant risk measures
    Volker Krätschmer
    Alexander Schied
    Henryk Zähle
    Finance and Stochastics, 2014, 18 : 271 - 295
  • [34] Method of Moments Estimators and Multi–step MLE for Poisson Processes
    A. S. Dabye
    A. A. Gounoung
    Yu. A. Kutoyants
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2018, 53 : 237 - 246
  • [35] Foundation of stochastic fractional calculus with fractional approximation of stochastic processes
    George A. Anastassiou
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [36] Foundation of stochastic fractional calculus with fractional approximation of stochastic processes
    Anastassiou, George A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [37] A CAVEAT ON THE ROBUSTNESS OF COMPOSITE LIKELIHOOD ESTIMATORS: THE CASE OF A MIS-SPECIFIED RANDOM EFFECT DISTRIBUTION
    Ogden, Helen E.
    STATISTICA SINICA, 2016, 26 (02) : 639 - 651
  • [38] Distance covariance for discretized stochastic processes
    Dehling, Herold
    Matsui, Muneya
    Mikosch, Thomas
    Samorodnitsky, Gennady
    Tafakori, Laleh
    BERNOULLI, 2020, 26 (04) : 2758 - 2789
  • [39] Optimized combinatorial clustering for stochastic processes
    Jumi Kim
    Wookey Lee
    Justin Jongsu Song
    Soo-Bok Lee
    Cluster Computing, 2017, 20 : 1135 - 1148
  • [40] Stochastic processes for line shapes and intensities
    Stamm, R.
    Hammami, R.
    Hannachi, I.
    Capes, H.
    Godbert-Mouret, L.
    Koubiti, M.
    Marandet, Y.
    Rosato, J.
    ADVANCES IN SPACE RESEARCH, 2014, 54 (07) : 1152 - 1158