The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking

被引:26
作者
Farrell, Steven [1 ]
Anderson, Dustin [2 ]
Calafiura, Paolo [1 ]
Cerati, Giuseppe [3 ]
Gray, Lindsey [3 ]
Kowalkowski, Jim [3 ]
Mudigonda, Mayur [1 ]
Prabhat [1 ]
Spentzouris, Panagiotis [3 ]
Spiropoulou, Maria [2 ]
Tsaris, Aristeidis [3 ]
Vlimant, Jean-Roch [2 ]
Zheng, Stephan [2 ]
机构
[1] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Fermilab Natl Accelerator Lab, Batavia, IL USA
来源
CONNECTING THE DOTS/INTELLIGENT TRACKERS 2017 (CTD/WIT 2017) | 2017年 / 150卷
关键词
D O I
10.1051/epjconf/201715000003
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Particle track reconstruction in dense environments such as the detectors of the High Luminosity Large Hadron Collider (HL-LHC) is a challenging pattern recognition problem. Traditional tracking algorithms such as the combinatorial Kalman Filter have been used with great success in LHC experiments for years. However, these state-of-the-art techniques are inherently sequential and scale poorly with the expected increases in detector occupancy in the HL-LHC conditions. The HEP.TrkX project is a pilot project with the aim to identify and develop cross-experiment solutions based on machine learning algorithms for track reconstruction. Machine learning algorithms bring a lot of potential to this problem thanks to their capability to model complex non-linear data dependencies, to learn effective representations of high-dimensional data through training, and to parallelize easily on high-throughput architectures such as GPUs. This contribution will describe our initial explorations into this relatively unexplored idea space. We will discuss the use of recurrent (LSTM) and convolutional neural networks to find and fit tracks in toy detector data.
引用
收藏
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 2015, J. Mach. Learn. Res.
[2]  
[Anonymous], ARXIV161100094
[3]  
[Anonymous], 2016, NIPS
[4]  
[Anonymous], 2014, Neural Information Processing Systems
[5]  
ATLAS Collaboration, 2008, J. Instrum, V3, DOI [DOI 10.1088/1748-0221/3/08/S08003, 10.1088/1748-0221/3/08/S08003]
[6]   The CMS experiment at the CERN LHC [J].
Chatrchyan, S. ;
Hmayakyan, G. ;
Khachatryan, V. ;
Sirunyan, A. M. ;
Adam, W. ;
Bauer, T. ;
Bergauer, T. ;
Bergauer, H. ;
Dragicevic, M. ;
Eroe, J. ;
Friedl, M. ;
Fruehwirth, R. ;
Ghete, V. M. ;
Glaser, P. ;
Hartl, C. ;
Hoermann, N. ;
Hrubec, J. ;
Haensel, S. ;
Jeitler, M. ;
Kastner, K. ;
Krammer, M. ;
de Abril, I. Magrans ;
Markytan, M. ;
Mikulec, I. ;
Neuherz, B. ;
Noebauer, T. ;
Oberegger, M. ;
Padrta, M. ;
Pernicka, M. ;
Porth, P. ;
Rohringer, H. ;
Schmid, S. ;
Schreiner, T. ;
Stark, R. ;
Steininger, H. ;
Strauss, J. ;
Taurok, A. ;
Uhl, D. ;
Waltenberger, W. ;
Walzel, G. ;
Widl, E. ;
Wulz, C. -E. ;
Petrov, V. ;
Prosolovich, V. ;
Chekhovsky, V. ;
Dvornikov, O. ;
Emeliantchik, I. ;
Litomin, A. ;
Makarenko, V. ;
Marfin, I. .
JOURNAL OF INSTRUMENTATION, 2008, 3 (08)
[7]  
Chollet Francois., 2015, Keras
[8]  
Denil Misha., 2011, CoRR
[9]   LHC Machine [J].
Evans, Lyndon ;
Bryant, Philip .
JOURNAL OF INSTRUMENTATION, 2008, 3 (08)
[10]  
Frhwirth R., 2013, PATTERN RECOGNITIO 1