Mathematical modeling and numerical simulations of Zika in Colombia considering mutation

被引:24
作者
Aranda L, Diego F. [1 ]
Gonzalez-Parra, Gilberto [2 ]
Benincasa, Tommaso [1 ]
机构
[1] Univ El Bosque, Fac Ciencias, Dept Matemat, Grp Invest SIGNOS, Bogota, Colombia
[2] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
关键词
Zika virus; Nonlinear dynamical systems; Epidemiological models; Global stability; Estimation of parameters; VIRUS-INFECTION; DISEASE; INFLUENZA; DYNAMICS; SIZE;
D O I
10.1016/j.matcom.2019.02.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we analyze the Zika virus transmission dynamics on human and mosquito populations. Mosquitoes play a role of infectious agents and vector of the Zika virus (ZIKV). In this sense, we set out a mathematical model assuming constant size population for the evolution of the infected humans with ZIKV and analyze its qualitative dynamics. The epidemic threshold parameter R-0 for the extinction of disease is computed. Numerical simulations of the model varying the numerical values of the parameters corroborate the theoretical results regarding R-0. The values of the parameters related to the mathematical model of the Zika epidemic are estimated using real data from Zika prevalence in Colombia for year 2016. We find a R-0 = 0.88 for this particular case which allows us to understand and explain some aspects of the Zika epidemic in Colombia. These results are valuable since they can be compared with Zika epidemics in other countries and from other years, and enrich the knowledge about the dynamics of the spread of Zika virus. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 48 条
  • [1] Mathematical model for Zika virus dynamics with sexual transmission route
    Agusto, F. B.
    Bewick, S.
    Fagan, W. F.
    [J]. ECOLOGICAL COMPLEXITY, 2017, 29 : 61 - 81
  • [2] Dynamic Epidemiological Models for Dengue Transmission: A Systematic Review of Structural Approaches
    Andraud, Mathieu
    Hens, Niel
    Marais, Christiaan
    Beutels, Philippe
    [J]. PLOS ONE, 2012, 7 (11):
  • [3] [Anonymous], 2002, NUMERICAL ANAL MATH
  • [4] [Anonymous], 1997, CAMBRIDGE SERIES STA
  • [5] [Anonymous], 2017, VIRUS CHIKUNGUNYA SE
  • [6] [Anonymous], 2002, INTERDISCIPLINARY AP
  • [7] Mathematical modeling of Toxoplasmosis disease in varying size populations
    Aranda, Diego F.
    Villanueva, Rafael J.
    Arenas, Abraham J.
    Gonzalez-Parra, Gilberto C.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (03) : 690 - 696
  • [8] A mathematical model for Babesiosis disease in bovine and tick populations
    Aranda, Diego F.
    Trejos, Deccy Y.
    Valverde, Jose C.
    Villanueva, Rafael J.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (03) : 249 - 256
  • [9] Modeling toxoplasmosis spread in cat populations under vaccination
    Arenas, Abraham J.
    Gonzalez-Parra, Gilberto
    Villanueva Mico, Rafael-J.
    [J]. THEORETICAL POPULATION BIOLOGY, 2010, 77 (04) : 227 - 237
  • [10] Bonyah E., 2016, Asian Pacific Journal of Tropical Disease, V6, P673, DOI 10.1016/S2222-1808(16)61108-8