GPU Framework for Change Detection in Multitemporal Hyperspectral Images

被引:39
作者
Lopez-Fandino, Javier [1 ]
Heras, Dora B. [1 ]
Argueello, Francisco [1 ]
Dalla Mura, Mauro [2 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Informac CiTIUS, Santiago De Compostela, Spain
[2] Univ Grenoble Alpes, Grenoble INP, CNRS, GIPSA Lab,Inst Engn, F-38000 Grenoble, France
关键词
Hyperspectral change detection; Segmentation; Spectral Angle Mapper; Change Vector Analysis; GPU; CUDA; SPECTRAL-SPATIAL CLASSIFICATION; SELECTION; METRICS;
D O I
10.1007/s10766-017-0547-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral-spatial techniques helps to improve the accuracy results but also implies a significant increase in processing time. In this paper, a Graphic Processor Unit (GPU) framework to perform object-based CD in multitemporal remote sensing hyperspectral data is presented. It is based on Change Vector Analysis with the Spectral Angle Mapper distance and Otsu's thresholding. Spatial information is taken into account by considering watershed segmentation. The GPU implementation achieves real-time execution and speedups of up to 46.5x with respect to an OpenMP implementation.
引用
收藏
页码:272 / 292
页数:21
相关论文
共 50 条
[21]   MULTITEMPORAL SAR IMAGES CHANGE DETECTION BASED ON JOINT SPARSE REPRESENTATION OF PAIR DICTIONARIES [J].
Li, Wei ;
Chen, Jiayu ;
Yang, Pei ;
Sun, Hong .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :6165-6168
[22]   RSB: Robust Successive Binarization for Change Detection in Bitemporal Hyperspectral Images [J].
Falini, Antonella .
ALGORITHMS, 2022, 15 (10)
[23]   Anomaly Detection and Target Recognition With Hyperspectral Images [J].
Lokman, Gurcan ;
Yilmaz, Guray .
2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, :1019-1022
[24]   Object detection in hyperspectral images [J].
Lone, Zubair Ahmad ;
Pais, Alwyn Roshan .
DIGITAL SIGNAL PROCESSING, 2022, 131
[25]   GPU accelerated waterpixel algorithm for superpixel segmentation of hyperspectral images [J].
Quesada-Barriuso, Pablo ;
Heras, Dora Blanco ;
Arguello, Francisco .
JOURNAL OF SUPERCOMPUTING, 2021, 77 (09) :10040-10052
[26]   Caffe CNN-based classification of hyperspectral images on GPU [J].
Alberto S. Garea ;
Dora B. Heras ;
Francisco Argüello .
The Journal of Supercomputing, 2019, 75 :1065-1077
[27]   GPU accelerated waterpixel algorithm for superpixel segmentation of hyperspectral images [J].
Pablo Quesada-Barriuso ;
Dora Blanco Heras ;
Francisco Argüello .
The Journal of Supercomputing, 2021, 77 :10040-10052
[28]   A Probabilistic Framework for Spectral-Spatial Classification of Hyperspectral Images [J].
Liu, Jinlin ;
Lu, Wenkai .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09) :5375-5384
[29]   An adaptive parcel-based technique robust to registration noise for change detection in multitemporal VHR images [J].
Bovolo, Francesca ;
Bruzzone, Lorenzo ;
Marchesi, Silvia .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIII, 2007, 6748
[30]   Unsupervised Change Detection in Multitemporal VHR Images Based on Deep Kernel PCA Convolutional Mapping Network [J].
Wu, Chen ;
Chen, Hongruixuan ;
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) :12084-12098