GPU Framework for Change Detection in Multitemporal Hyperspectral Images

被引:39
|
作者
Lopez-Fandino, Javier [1 ]
Heras, Dora B. [1 ]
Argueello, Francisco [1 ]
Dalla Mura, Mauro [2 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Informac CiTIUS, Santiago De Compostela, Spain
[2] Univ Grenoble Alpes, Grenoble INP, CNRS, GIPSA Lab,Inst Engn, F-38000 Grenoble, France
关键词
Hyperspectral change detection; Segmentation; Spectral Angle Mapper; Change Vector Analysis; GPU; CUDA; SPECTRAL-SPATIAL CLASSIFICATION; SELECTION; METRICS;
D O I
10.1007/s10766-017-0547-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral-spatial techniques helps to improve the accuracy results but also implies a significant increase in processing time. In this paper, a Graphic Processor Unit (GPU) framework to perform object-based CD in multitemporal remote sensing hyperspectral data is presented. It is based on Change Vector Analysis with the Spectral Angle Mapper distance and Otsu's thresholding. Spatial information is taken into account by considering watershed segmentation. The GPU implementation achieves real-time execution and speedups of up to 46.5x with respect to an OpenMP implementation.
引用
收藏
页码:272 / 292
页数:21
相关论文
共 50 条
  • [1] GPU Framework for Change Detection in Multitemporal Hyperspectral Images
    Javier López-Fandiño
    Dora B. Heras
    Francisco Argüello
    Mauro Dalla Mura
    International Journal of Parallel Programming, 2019, 47 : 272 - 292
  • [2] CUDA Multiclass Change Detection for Remote Sensing Hyperspectral Images using Extended Morphological Profiles
    Lopez-Fandino, Javier
    Heras, Dora B.
    Arguello, Francisco
    Duro, Richard J.
    PROCEEDINGS OF THE 2017 9TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS), VOL 1, 2017, : 404 - 409
  • [3] A Review of Change Detection in Multitemporal Hyperspectral Images Current techniques, applications, and challenges
    Liu, Sicong
    Marinelli, Daniele
    Bruzzone, Lorenzo
    Bovolo, Francesca
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2019, 7 (02): : 140 - 158
  • [4] Fast Unmixing and Change Detection in Multitemporal Hyperspectral Data
    Borsoi, Ricardo Augusto
    Imbiriba, Tales
    Bermudez, Jose Carlos Moreira
    Richard, Cedric
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 975 - 988
  • [5] Advance in Hyperspectral Images Change Detection
    Song Ruo-xi
    Feng Yi-ning
    Cheng Wei
    Wang Xiang-hai
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43 (08) : 2354 - 2362
  • [6] GPU Projection of ECAS-II Segmenter for Hyperspectral Images Based on Cellular Automata
    Lopez-Fandino, Javier
    Priego, Blanca
    Heras, Dora B.
    Arguello, Francisco
    Duro, Richard J.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (01) : 20 - 28
  • [7] A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images
    Bovolo, Francesca
    Marchesi, Silvia
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (06): : 2196 - 2212
  • [8] A support vector domain method for change detection in multitemporal images
    Bovolo, F.
    Camps-Valls, G.
    Bruzzone, L.
    PATTERN RECOGNITION LETTERS, 2010, 31 (10) : 1148 - 1154
  • [9] Introductory View of Anomalous Change Detection in Hyperspectral Images Within a Theoretical Gaussian Framework
    Acito, Nicola
    Diani, Marco
    Corsini, Giovanni
    Resta, Salvatore
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2017, 32 (07) : 2 - 27
  • [10] GPU IMPLEMENTATION OF A LOSSY COMPRESSION ALGORITHM FOR HYPERSPECTRAL IMAGES
    Santos, Lucana
    Vitulli, Raffaele
    Fco. Lopez, Jose
    Sarmiento, Roberto
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,