Clusters of microRNAs emerge by new hairpins in existing transcripts

被引:68
作者
Marco, Antonio [1 ]
Ninova, Maria [1 ]
Ronshaugen, Matthew [1 ]
Griffiths-Jones, Sam [1 ]
机构
[1] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
EVOLUTIONARY DYNAMICS; MAXIMUM-LIKELIHOOD; DROSOPHILA; GENE; BIOGENESIS; RNA; RECOGNITION; ORIGINS; OPERONS; IDENTIFICATION;
D O I
10.1093/nar/gkt534
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetic linkage may result in the expression of multiple products from a polycistronic transcript, under the control of a single promoter. In animals, protein-coding polycistronic transcripts are rare. However, microRNAs are frequently clustered in the genomes of animals, and these clusters are often transcribed as a single unit. The evolution of microRNA clusters has been the subject of much speculation, and a selective advantage of clusters of functionally related microRNAs is often proposed. However, the origin of microRNA clusters has not been so far explored. Here, we study the evolution of microRNA clusters in Drosophila melanogaster. We observed that the majority of microRNA clusters arose by the de novo formation of new microRNA-like hairpins in existing microRNA transcripts. Some clusters also emerged by tandem duplication of a single microRNA. Comparative genomics show that these clusters are unlikely to split or undergo rearrangements. We did not find any instances of clusters appearing by rearrangement of pre-existing microRNA genes. We propose a model for microRNA cluster evolution in which selection over one of the microRNAs in the cluster interferes with the evolution of the other linked microRNAs. Our analysis suggests that the study of microRNAs and small RNAs must consider linkage associations.
引用
收藏
页码:7745 / 7752
页数:8
相关论文
共 62 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] Clustering and conservation patterns of human microRNAs
    Altuvia, Y
    Landgraf, P
    Lithwick, G
    Elefant, N
    Pfeffer, S
    Aravin, A
    Brownstein, MJ
    Tuschl, T
    Margalit, H
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 (08) : 2697 - 2706
  • [3] [Anonymous], 2007, The Origins of Genome Architecture
  • [4] [Anonymous], 2004, Molecular Biology of the Cell
  • [5] The small RNA profile during Drosophila melanogaster development
    Aravin, AA
    Lagos-Quintana, M
    Yalcin, A
    Zavolan, M
    Marks, D
    Snyder, B
    Gaasterland, T
    Meyer, J
    Tuschl, T
    [J]. DEVELOPMENTAL CELL, 2003, 5 (02) : 337 - 350
  • [6] Beyond Secondary Structure: Primary-Sequence Determinants License Pri-miRNA Hairpins for Processing
    Auyeung, Vincent C.
    Ulitsky, Igor
    McGeary, Sean E.
    Bartel, David P.
    [J]. CELL, 2013, 152 (04) : 844 - 858
  • [7] Vive la difference: biogenesis and evolution of microRNAs in plants and animals
    Axtell, Michael J.
    Westholm, Jakub O.
    Lai, Eric C.
    [J]. GENOME BIOLOGY, 2011, 12 (04):
  • [8] MicroRNAs: Target Recognition and Regulatory Functions
    Bartel, David P.
    [J]. CELL, 2009, 136 (02) : 215 - 233
  • [9] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [10] Genetic linkage and natural selection
    Barton, N. H.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 365 (1552) : 2559 - 2569