HYPERACCRETING BLACK HOLE AS GAMMA-RAY BURST CENTRAL ENGINE. I. BARYON LOADING IN GAMMA-RAY BURST JETS

被引:118
|
作者
Lei, Wei-Hua [1 ,2 ]
Zhang, Bing [2 ,3 ,4 ]
Liang, En-Wei [5 ,6 ,7 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[2] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA
[3] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China
[4] Peking Univ, Dept Astron, Beijing 100871, Peoples R China
[5] Guangxi Univ, Dept Phys, Nanning 530004, Peoples R China
[6] Guangxi Univ, GXU NAOC Ctr Astrophys & Space Sci, Nanning 530004, Peoples R China
[7] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
来源
ASTROPHYSICAL JOURNAL | 2013年 / 765卷 / 02期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
accretion; accretion disks; black hole physics; magnetic fields; COOLED ACCRETION DISKS; BLANDFORD-ZNAJEK PROCESS; COMPACT OBJECT MERGERS; LORENTZ-FACTOR; E-P; E-I-E-ISO CORRELATION; POYNTING-FLUX; GRB; 080916C; ENERGY; EMISSION; MODELS;
D O I
10.1088/0004-637X/765/2/125
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A hyperaccreting stellar-mass black hole has been long speculated as the best candidate for the central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon-loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by nu(nu) over bar -annihilation or by the Blandford-Znajek (BZ) mechanism. We consider baryon loading from a neutrino-driven wind launched from a neutrino-cooling-dominated accretion flow. For a magnetically dominated BZ jet, we consider neutron drifting from the magnetic wall surrounding the jet and subsequent positron capture and proton-neutron inelastic collisions. The minimum baryon loads in both types of jet are calculated. We find that in both cases a more luminous jet tends to be more baryon poor. A neutrino-driven "fireball" is typically "dirtier" than a magnetically dominated jet, while a magnetically dominated jet can be much cleaner. Both models have the right scaling to interpret the empirical Gamma-L-iso relation discovered recently. Since some neutrino-driven jets have too much baryon loading as compared with the data, we suggest that at least a good fraction of GRBs should have a magnetically dominated central engine.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Gamma-ray burst cosmology
    Wang, F. Y.
    Dai, Z. G.
    Liang, E. W.
    NEW ASTRONOMY REVIEWS, 2015, 67 : 1 - 17
  • [42] Tail emission of prompt gamma-ray burst jets
    Yamazaki, Ryo
    Toma, Kenji
    Ioka, Kunihito
    Nakamura, Takashi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 369 (01) : 311 - 316
  • [43] Tail emission of prompt gamma-ray burst jets
    Yamazaki, R.
    Toma, K.
    Ioka, K.
    Nakamura, T.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2006, 121 (12): : 1627 - 1628
  • [44] Observational constraints on the structure of gamma-ray burst jets
    Beniamini, Paz
    Nakar, Ehud
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (04) : 5430 - 5440
  • [45] Properties of relativistic jets in gamma-ray burst afterglows
    Panaitescu, A
    Kumar, P
    ASTROPHYSICAL JOURNAL, 2002, 571 (02): : 779 - 789
  • [46] Gamma-ray burst afterglows from anisotropic jets
    Dai, ZG
    Gou, LJ
    ASTROPHYSICAL JOURNAL, 2001, 552 (01): : 72 - 80
  • [47] Tail emission of prompt gamma-ray burst jets
    Yamazaki, Ryo
    Toma, Kenji
    Ioka, Kunihito
    Nakamura, Takashi
    GAMMA-RAY BURSTS IN THE SWIFT ERA, 2006, 836 : 205 - +
  • [48] Gamma-Ray Burst Progenitors
    Levan, Andrew
    Crowther, Paul
    de Grijs, Richard
    Langer, Norbert
    Xu, Dong
    Yoon, Sung-Chul
    SPACE SCIENCE REVIEWS, 2016, 202 (1-4) : 33 - 78
  • [49] Unusual gamma-ray burst
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2022, 65 (11) : 1207 - 1208
  • [50] Gamma-ray burst afterglows
    Zhang, Bing
    ADVANCES IN SPACE RESEARCH, 2007, 40 (08) : 1186 - 1198