Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure

被引:44
作者
Tapio, Kosti [1 ]
Leppiniemi, Jenni [2 ,3 ]
Shen, Boxuan [1 ]
Hytonen, Vesa P. [2 ,3 ]
Fritzsche, Wolfgang [4 ]
Toppari, J. Jussi [1 ]
机构
[1] Univ Jyvaskyla, Dept Phys, Nanosci Ctr, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Tampere, BioMediTech, Laakarinkatu 1, FI-33520 Tampere, Finland
[3] Fimlab Labs, Biokatu 4, FI-33520 Tampere, Finland
[4] Leibniz Inst Photon Technol IPHT, Albert Einstein Str 9, D-07745 Jena, Germany
基金
芬兰科学院;
关键词
DNA; gold nanoparticles; conjugation; dielectrophoresis; DNA metallization; single electron transistor; ENHANCED RAMAN-SCATTERING; ORIGAMI NANOSTRUCTURES; GOLD NANOPARTICLES; ROOM-TEMPERATURE; MEMORY DEVICES; SURFACE; LITHOGRAPHY; TRANSISTOR; SHAPES; ARRAYS;
D O I
10.1021/acs.nanolett.6b02378
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However, after extending the islands by chemical growth of gold, several structures exhibited Coulomb blockade behavior from 4.2 K up to room temperature, which gives a good indication that self-assembled DNA structures could be used for nanoelectronic patterning and single electron devices.
引用
收藏
页码:6780 / 6786
页数:7
相关论文
共 56 条
[1]  
Altshuler B. L., 1991, MESOSCOPIC PHENOMENA, P173
[2]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75
[3]   DNA Origami Directed Large-Scale Fabrication of Nanostructures Resembling Room Temperature Single-Electron Transistors [J].
Chen, Zhong ;
Lan, Xiang ;
Wang, Qiangbin .
SMALL, 2013, 9 (21) :3567-3571
[4]   The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement [J].
Csáki, A ;
Kaplanek, P ;
Möller, R ;
Fritzsche, W .
NANOTECHNOLOGY, 2003, 14 (12) :1262-1268
[5]   Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami [J].
Ding, Baoquan ;
Deng, Zhengtao ;
Yan, Hao ;
Cabrini, Stefano ;
Zuckermann, Ronald N. ;
Bokor, Jeffrey .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (10) :3248-+
[6]   A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads [J].
Douglas, Shawn M. ;
Bachelet, Ido ;
Church, George M. .
SCIENCE, 2012, 335 (6070) :831-834
[7]   Rapid prototyping of 3D DNA-origami shapes with caDNAno [J].
Douglas, Shawn M. ;
Marblestone, Adam H. ;
Teerapittayanon, Surat ;
Vazquez, Alejandro ;
Church, George M. ;
Shih, William M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (15) :5001-5006
[8]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[9]   Assembly of Single-Walled Carbon Nanotubes on DNA-Origami Templates through Streptavidin-Biotin Interaction [J].
Eskelinen, Antti-Pekka ;
Kuzyk, Anton ;
Kaltiaisenaho, Toni K. ;
Timmermans, Marina Y. ;
Nasibulin, Albert G. ;
Kauppinen, Esko I. ;
Torma, Paivi .
SMALL, 2011, 7 (06) :746-750
[10]   DNA-Templated Lithography and Nanofabrication for the Fabrication of Nanoscale Electronic Circuitry [J].
Gates, Elisabeth P. ;
Dearden, Andrew M. ;
Woolley, Adam T. .
CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2014, 44 (04) :354-370