Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

被引:211
作者
Giger, Maryellen L. [1 ]
Chan, Heang-Ping [2 ]
Boone, John [3 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[2] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[3] Univ Calif Davis, Med Ctr, Dept Radiol, Sacramento, CA 95817 USA
关键词
diagnostic radiography; feature extraction; image classification; image segmentation; mammography; medical image processing; molecular biophysics;
D O I
10.1118/1.3013555
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists-as opposed to a completely automatic computer interpretation-focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous-from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects-collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more-from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.
引用
收藏
页码:5799 / 5820
页数:22
相关论文
共 398 条
  • [1] COMPUTER-AIDED DETECTION OF DIFFUSE LIVER-DISEASE IN ULTRASOUND IMAGES
    ABE, C
    KAHN, CE
    DOI, K
    KATSURAGAWA, S
    [J]. INVESTIGATIVE RADIOLOGY, 1992, 27 (01) : 71 - 77
  • [2] Edge displacement field-based classification for improved detection of polyps in CT colonography
    Acar, B
    Beaulieu, CF
    Göktürk, SB
    Tomasi, C
    Paik, DS
    Jeffrey, RB
    Yee, J
    Napel, S
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (12) : 1461 - 1467
  • [3] AEBERSOLD P, 1956, RADIUM THER NUCL MED, V75, P1027
  • [4] ANGER HO, 1964, J NUCL MED, V5, P515
  • [5] [Anonymous], HDB MED IMAGING
  • [6] Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images
    Aoyama, M
    Li, Q
    Katsuragawa, S
    Li, F
    Sone, S
    Doi, K
    [J]. MEDICAL PHYSICS, 2003, 30 (03) : 387 - 394
  • [7] Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images
    Aoyama, M
    Li, Q
    Katsuragawa, S
    MacMahon, H
    Doi, K
    [J]. MEDICAL PHYSICS, 2002, 29 (05) : 701 - 708
  • [8] Computerized detection of intracranial aneurysms for three-dimensional MR angiography: Feature extraction of small protrusions based on a shape-based difference image technique
    Arimura, H
    Li, G
    Korogi, Y
    Hirai, T
    Katsuragawa, S
    Yamashita, Y
    Tsuchiya, K
    Doi, K
    [J]. MEDICAL PHYSICS, 2006, 33 (02) : 394 - 401
  • [9] The lung image database consortium (LIDC): Ensuring the integrity of expert-defined "truth"
    Armato, Samuel G., III
    Roberts, Rachael Y.
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    McLennan, Geoffrey
    Engelmann, Roger M.
    Bland, Peyton H.
    Aberle, Denise R.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Croft, Barbara Y.
    Clarke, Laurence P.
    [J]. ACADEMIC RADIOLOGY, 2007, 14 (12) : 1455 - 1463
  • [10] Temporal subtraction of dual-energy chest radiographs
    Armato, Samuel G., III
    Doshi, Devang J.
    Engelmann, Roger
    Caligiuri, Philip
    MacMahon, Heber
    [J]. MEDICAL PHYSICS, 2006, 33 (06) : 1911 - 1919