An Efficient Method for Detection of Breast Cancer Based on Closed Frequent Itemsets Mining

被引:3
作者
Sutha, M. Jeya [1 ]
Dhanaseelan, F. Ramesh [1 ]
机构
[1] St Xaviers Catholic Coll Engn, Dept Comp Applicat, Chunkankadai 629003, Tamil Nadu, India
关键词
Data Mining; Closed Frequent Itemsets; Breast Cancer; Sliding Window; Stream Mining; ARTIFICIAL NEURAL-NETWORKS; INTELLIGENT SYSTEM; DIAGNOSIS; PREDICTION; PATTERNS; HYBRID;
D O I
10.1166/jmihi.2015.1483
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper investigates the core factors which contribute to breast cancer. An algorithm MCFI-DS (Mining Closed Frequent ltemsets over Data Streams) is applied to identify these factors and the dataset "Wisconsin Breast Cancer Database" is considered to evaluate the proposed system performances. The core attributes belonging to "malignant" and "benign" conditions are identified. It is seen that bare nuclei contributes more to the presence of breast cancer. Mitoses are an ineffective feature for detecting breast cancer. The algorithm MCFI-DS is compared with two other state of the art algorithms TMoment and MFI-TransSW to claim the performance improvements over other algorithms.
引用
收藏
页码:987 / 994
页数:8
相关论文
共 34 条
[1]   An evolutionary artificial neural networks approach for breast cancer diagnosis [J].
Abbass, HA .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2002, 25 (03) :265-281
[2]  
Agrawal R., 1993, P ACM SIGMOD INT C M
[3]  
Agrawal R., P 20 INT C VERY LARG
[4]   Support vector machines combined with feature selection for breast cancer diagnosis [J].
Akay, Mehmet Fatih .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) :3240-3247
[5]   estWin:: Online data stream mining of recent frequent itemsets by sliding window method [J].
Chang, JH ;
Lee, WS .
JOURNAL OF INFORMATION SCIENCE, 2005, 31 (02) :76-90
[6]  
Chang Joong Hyuk, 2003, P 9 ACM SIGKDD INT C, P487, DOI DOI 10.1145/956750.956807
[7]   A GAs based approach for mining breast cancer pattern [J].
Chen, TC ;
Hsu, TC .
EXPERT SYSTEMS WITH APPLICATIONS, 2006, 30 (04) :674-681
[8]   Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines [J].
Chou, SM ;
Lee, TS ;
Shao, YE ;
Chen, IF .
EXPERT SYSTEMS WITH APPLICATIONS, 2004, 27 (01) :133-142
[9]  
Han CY, 2008, COMPUT INFORM, V27, P315
[10]   Mining frequent patterns without candidate generation: A frequent-pattern tree approach [J].
Han, JW ;
Pei, J ;
Yin, YW ;
Mao, RY .
DATA MINING AND KNOWLEDGE DISCOVERY, 2004, 8 (01) :53-87