Finite Element Analysis of the 3 Method for Characterising High Thermal Conductivity Ultra-Thin Film/Substrate System

被引:3
|
作者
Liu, Weidong [1 ]
Zhang, Liangchi [1 ]
Moridi, Alireza [1 ]
机构
[1] Univ New South Wales, Lab Precis & Nano Proc Technol, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
来源
COATINGS | 2019年 / 9卷 / 02期
基金
澳大利亚研究理事会;
关键词
thermal conductivity; finite element analysis; 3; method; ultra-thin film; substrate system; MICROSCOPY; HEAT;
D O I
10.3390/coatings9020087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The 3 method is an attractive technique for measuring the thermal conductivity of materials; but it cannot characterise high thermal conductivity ultra-thin film/substrate systems because of the deep heat penetration depth. Recently, a modified 3 method with a nano-strip was specifically developed for high thermal conductivity thin film systems. This paper aims to evaluate the applicability of this method with the aid of the finite element analysis. To this end, a numerical platform of the modified 3 method was established and applied to a bulk silicon and an AlN thin-film/Si substrate system. The numerical results were compared with the predictions of theoretical models used in the 3 method. The study thus concluded that the modified 3 method is suitable for characterising high thermal conductivity ultra-thin film/substrate systems.
引用
收藏
页数:10
相关论文
共 26 条
  • [1] Measuring thermal conductivity of nanostructures with the 3ω method: the need for finite element modeling
    Peri, Lorenzo
    Prete, Domenic
    Demontis, Valeria
    Degoli, Elena
    Ruini, Alice
    Magri, Rita
    Rossella, Francesco
    NANOTECHNOLOGY, 2023, 34 (43)
  • [2] Characterisation of high thermal conductivity thin-film substrate systems and their interface thermal resistance
    Moridi, Alireza
    Zhang, Liangchi
    Liu, Weidong
    Duvall, Steven
    Brawley, Andrew
    Jiang, Zhuangde
    Yang, Shuming
    Li, Changsheng
    SURFACE & COATINGS TECHNOLOGY, 2018, 334 : 233 - 242
  • [3] Thermal conductivity analysis of laminated composite plates using finite element method
    Dash, Dibyajyoti
    Bano, Alfia
    Neigapula, Venkata Swamy Naidu
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [4] Thin-film thermal conductivity measurement using microelectrothermal test structures and finite-element-model-based data analysis
    Stojanovic, Nenad
    Yun, Jongsin
    Washington, Erika B. K.
    Berg, Jordan M.
    Holtz, Mark W.
    Temkin, Henryk
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16 (05) : 1269 - 1275
  • [5] interface mechanical analysis of ultra thin film-substrate system under the linear contact
    Nie C.-Y.
    Zheng D.-Z.
    Gu L.
    Zhang C.
    Wang L.-Q.
    Gu, Le (gule@hit.edu.cn), 1600, Tsinghua University (34): : 202 - 209
  • [6] Fracture Analysis of High strength and Ultra high strength Concrete beams by using Finite Element Method
    Murthy, A. Ramachandra
    Iyer, Nagesh R.
    Prasad, B. K. Raghu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2012, 30 (02): : 177 - 194
  • [7] Learning Localized Spatial Material Properties of Substrates in Ultra-Thin Packages Using Markov Chain Monte Carlo and Finite Element Analysis
    Selvanayagam, Cheryl
    Pham Luu Trung Duong
    Raghavan, Nagarajan
    IEEE ACCESS, 2020, 8 : 50163 - 50170
  • [8] Thermal conductivity and interfacial effect of parylene C thin film using the 3-omega method
    Guermoudi, Amine Abdelkader
    Cresson, Pierre Yves
    Ouldabbes, Amaria
    Boussatour, Ghizlane
    Lasri, Tuami
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 145 (01) : 1 - 12
  • [9] Thermal conductivity and interfacial effect of parylene C thin film using the 3-omega method
    Amine Abdelkader Guermoudi
    Pierre Yves Cresson
    Amaria Ouldabbes
    Ghizlane Boussatour
    Tuami Lasri
    Journal of Thermal Analysis and Calorimetry, 2021, 145 : 1 - 12
  • [10] Thermal residual stresses in silicon thin film solar cells under operational cyclic thermal loading: A finite element analysis
    Namvar, A.
    Dehghany, M.
    Sohrabpour, S.
    Naghdabadi, R.
    SOLAR ENERGY, 2016, 135 : 366 - 373