Self-consistent field modeling of linear nonionic micelles

被引:23
|
作者
Jódar-Reyes, AB
Leermakers, FAM
机构
[1] Univ Extremadura, Dept Fis, Fac Vet, Caceres, Spain
[2] Univ Wageningen, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2006年 / 110卷 / 12期
关键词
D O I
10.1021/jp056737y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A self-consistent field theory is used to predict structural, mechanical, and thermodynamical properties of linear micelles of selected nonionic surfactants of the type CnEm. Upon increase in surfactant concentration the sudden micelle shape transition from spherical to cylindrical (second critical micelle concentration (cmc)) is analyzed. The cylindrical micelles consist of a body (with radius R-c and length L) and two slightly swollen endcaps. For small L, the shape resembles a dumbbell. With increase in the length of the body, an oscillatory behavior in the grand potential of the micelle is found. The wavelength of the oscillation (lambda(d)) is proportional to the surfactant tail length n. The amplitude of these oscillations decreases exponentially with a decay length xi. In the limit of very long micelles, the grand potential converges to the endcap (free) energy E-c. This endcap energy increases approximately quadratic with the tail length and diminishes by increasing the headgroup size m. The micelle size distribution is generated showing non-monotonic features due to the presence of short dumbbells and becomes exponential when L >> 8R(c). It is also shown that the endcap energy can be estimated in first order by the grand potential of the spherical micelle that coexists with infinitely long cylindrical micelles. The persistence length l(p) of these linear micelles is evaluated to estimate the relative importance of conformational entropy for these micelles.
引用
收藏
页码:6300 / 6311
页数:12
相关论文
共 50 条
  • [1] Self-consistent field theory for the nucleation of micelles
    Besseling, NAM
    Stuart, MAC
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (11): : 5432 - 5436
  • [2] ON THE SELF-CONSISTENT FIELD-THEORY OF SURFACTANT MICELLES
    LEERMAKERS, FAM
    LYKLEMA, J
    COLLOIDS AND SURFACES, 1992, 67 : 239 - 255
  • [3] A SELF-CONSISTENT THEORY OF DRESSED MICELLES
    HAYTER, JB
    LANGMUIR, 1992, 8 (12) : 2873 - 2876
  • [4] Self-consistent-field prediction for the persistence length of wormlike micelles of nonionic surfactants
    Lauw, Y
    Leermakers, FAM
    Stuart, MAC
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (39): : 10912 - 10918
  • [5] Self-consistent field predictions for quenched spherical biocompatible triblock copolymer micelles
    Lebouille, Jerome G. J. L.
    Tuinier, Remco
    Vleugels, Leo F. W.
    Stuart, Martien A. Cohen
    Leermakers, Frans A. M.
    SOFT MATTER, 2013, 9 (31) : 7515 - 7525
  • [6] Dendritic versus Linear Polymer Brushes Self-Consistent Field Modeling, Scaling Theory, and Experiments
    Polotsky, Alexey A.
    Gillich, Torben
    Borisov, Oleg V.
    Leermakers, Frans A. M.
    Textor, Marcus
    Birshtein, Tatiana M.
    MACROMOLECULES, 2010, 43 (22) : 9555 - 9566
  • [7] Self-Consistent ICRH Modeling
    Hellsten, T.
    Johnson, T.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 295 - 297
  • [8] Self-consistent field model of inhomogeneous adsorption of nonionic surfactants onto polystyrene latex
    Jódar-Reyes, AB
    Ortega-Vinuesa, JL
    Martín-Rodríguez, A
    Leermakers, FAM
    LANGMUIR, 2003, 19 (03) : 878 - 887
  • [9] SELF-CONSISTENT FIELD POTENTIAL
    LIBERMAN, DA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (03): : 359 - &
  • [10] Self-consistent field for tungsten
    Manning, MF
    Millman, J
    PHYSICAL REVIEW, 1936, 49 (11): : 0848 - 0853