Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus

被引:43
作者
Li, Jiqiang [1 ]
Zhao, Zunkang [2 ]
Hayward, Alice [3 ]
Cheng, Hongyu [4 ]
Fu, Donghui [2 ]
机构
[1] Zhangye Acad Agr Sci, Zhangye 734000, Gansu, Peoples R China
[2] Jiangxi Agr Univ, Agron Coll, Key Lab Crop Physiol Ecol & Genet Breeding, Minist Educ, Nanchang 330045, Peoples R China
[3] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld 4072, Australia
[4] Hexi Univ, Coll Agr & Biotechnol, Zhangye 734000, Gansu, Peoples R China
关键词
Sclerotinia sclerotiorum; Brassica; Quantitative trait loci (QTL); In silico integration; GENOME-WIDE ANALYSIS; DISEASE RESISTANCE; FIBER QUALITY; GENES; IDENTIFICATION; EVOLUTION; COTTON; METAANALYSIS; ASSOCIATION; CLUSTERS;
D O I
10.1007/s10681-015-1417-0
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Much research has identified quantitative trait loci (QTL) for resistance to Sclerotinia sclerotiorum in Brassica. However, the real-world applicability of these QTL for gene discovery and resistance breeding has been hampered by poor inter-study integration. This is due to the use of different mapping populations, environments and diverse markers. In this study, a physical map was constructed based on the recent Brassica napus genome release and used link QTL for resistance to S. sclerotiorum. In total, 353 markers, divided into 146 and 207 on the A and C genomes respectively, were used. This enabled integration of 35 QTLs, including 8 leaf resistance (LR) and 27 stem resistance (SR) QTLs. SR QTLs that were conserved across studies were found on A9 (from 22.5 to 27.5 Mb) and on C6 (from 29.5 to 36.1 Mb). Clusters of nucleotide-binding-site, leucine-rich-repeat-containing candidate resistance genes were identified, which provide key targets for identification of genes for resistance to S. sclerotiorum in B. napus.
引用
收藏
页码:483 / 489
页数:7
相关论文
共 50 条
  • [21] Using proteomic analysis to find the proteins involved in resistance against Sclerotinia sclerotiorum in adult Brassica napus
    Wen, Li
    Tan, Tai-Long
    Shu, Jia-Bin
    Chen, Ying
    Liu, Ying
    Yang, Zhong-Fang
    Zhang, Qiu-Ping
    Yin, Ming-Zhi
    Tao, Jun
    Guan, Chun-Yun
    [J]. EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2013, 137 (03) : 505 - 523
  • [22] Analysis of Tissue-Specific Defense Responses to Sclerotinia sclerotiorum in Brassica napus
    Liu, Jie
    Zuo, Rong
    He, Yizhou
    Zhou, Cong
    Yang, Lingli
    Gill, Rafaqat Ali
    Bai, Zetao
    Zhang, Xiong
    Liu, Yueying
    Cheng, Xiaohui
    Huang, Junyan
    [J]. PLANTS-BASEL, 2022, 11 (15):
  • [23] Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus
    Seifbarghi, Shirin
    Borhan, M. Hossein
    Wei, Yangdou
    Coutu, Cathy
    Robinson, Stephen J.
    Hegedus, Dwayne D.
    [J]. BMC GENOMICS, 2017, 18
  • [24] In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus
    Zhou, Qing-Hong
    Fu, Dong-Hui
    Mason, Annaliese S.
    Zeng, Yong-Jun
    Zhao, Chao-Xian
    Huang, Ying-Jin
    [J]. MOLECULAR BREEDING, 2014, 33 (04) : 881 - 894
  • [25] Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus
    Shi, Jiaqin
    Li, Ruiyuan
    Qiu, Dan
    Jiang, Congcong
    Long, Yan
    Morgan, Colin
    Bancroft, Ian
    Zhao, Jianyi
    Meng, Jinling
    [J]. GENETICS, 2009, 182 (03) : 851 - 861
  • [26] Identification of receptor-like proteins induced by Sclerotinia sclerotiorum in Brassica napus
    Li, Wei
    Lu, Junxing
    Yang, Chenghuizi
    Xia, Shitou
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [27] Breeding for resistance to Sclerotinia sclerotiorum in Brassica oleracea
    Dickson, MH
    Petzoldt, R
    [J]. INTERNATIONAL SYMPOSIUM ON BRASSICAS: NINTH CRUCIFER GENETICS WORKSHOP, 1996, (407): : 103 - 108
  • [28] Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments
    Yin, Xiangrui
    Yi, Bin
    Chen, Wei
    Zhang, Weijie
    Tu, Jinxing
    Fernando, W. G. Dilantha
    Fu, Tingdong
    [J]. EUPHYTICA, 2010, 173 (01) : 25 - 35
  • [29] BnaWRKY75 positively regulates the resistance against Sclerotinia sclerotiorum in ornamental Brassica napus
    Yu, Kexin
    Zhang, Yijie
    Fei, Xiaoyuan
    Ma, Luyue
    Sarwar, Rehman
    Tan, Xiaoli
    Wang, Zheng
    [J]. HORTICULTURAL PLANT JOURNAL, 2024, 10 (03) : 784 - 796
  • [30] Overexpression of Brassica napus MPK4 Enhances Resistance to Sclerotinia sclerotiorum in Oilseed Rape
    Wang, Zheng
    Mao, Han
    Dong, Caihua
    Ji, Ruiqin
    Cai, Li
    Fu, Hao
    Liu, Shengyi
    [J]. MOLECULAR PLANT-MICROBE INTERACTIONS, 2009, 22 (03) : 235 - 244