Image Classification Using Multiple Convolutional Neural Networks on the Fashion-MNIST Dataset

被引:14
|
作者
Nocentini, Olivia [1 ,2 ]
Kim, Jaeseok [1 ]
Bashir, Muhammad Zain [1 ]
Cavallo, Filippo [1 ,2 ]
机构
[1] Univ Florence, Dept Ind Engn, I-50139 Florence, Italy
[2] St Anna Sch Adv Studies, BioRobot Inst, I-56127 Pisa, Italy
关键词
image classification; convolutional neural networks; dressing assistance; social robotics;
D O I
10.3390/s22239544
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
As the elderly population grows, there is a need for caregivers, which may become unsustainable for society. In this situation, the demand for automated help increases. One of the solutions is service robotics, in which robots have automation and show significant promise in working with people. In particular, household settings and aged people's homes will need these robots to perform daily activities. Clothing manipulation is a daily activity and represents a challenging area for a robot. The detection and classification are key points for the manipulation of clothes. For this reason, in this paper, we proposed to study fashion image classification with four different neural network models to improve apparel image classification accuracy on the Fashion-MNIST dataset. The network models are tested with the highest accuracy with a Fashion-Product dataset and a customized dataset. The results show that one of our models, the Multiple Convolutional Neural Network including 15 convolutional layers (MCNN15), boosted the state of art accuracy, and it obtained a classification accuracy of 94.04% on the Fashion-MNIST dataset with respect to the literature. Moreover, MCNN15, with the Fashion-Product dataset and the household dataset, obtained 60% and 40% accuracy, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Convolutional neural networks for hyperspectral image classification
    Yu, Shiqi
    Jia, Sen
    Xu, Chunyan
    NEUROCOMPUTING, 2017, 219 : 88 - 98
  • [22] Hyperspectral Image Classification with Convolutional Neural Networks
    Slavkovikj, Viktor
    Verstockt, Steven
    De Neve, Wesley
    Van Hoecke, Sofie
    Van de Walle, Rik
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1159 - 1162
  • [23] Feature Correlation Loss in Convolutional Neural Networks for Image Classification
    Zhou, Jiahuan
    Xiao, Di
    Zhang, Mengyi
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 219 - 223
  • [24] Convolutional Neural Network Based Kannada-MNIST Classification
    Gu, Emily Xiaoxuan
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 180 - 185
  • [25] Binary Quantization Analysis of Neural Networks Weights on MNIST Dataset
    Peric, Zoran H.
    Denic, Bojan D.
    Savic, Milan S.
    Vticic, Nikola J.
    Simic, Nikola B.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2021, 27 (04) : 55 - 61
  • [26] Review of Image Classification Algorithms Based on Convolutional Neural Networks
    Chen, Leiyu
    Li, Shaobo
    Bai, Qiang
    Yang, Jing
    Jiang, Sanlong
    Miao, Yanming
    REMOTE SENSING, 2021, 13 (22)
  • [27] Diagonal-kernel convolutional neural networks for image classification
    Li, Guoqing
    Shen, Xuzhao
    Li, Jiaojie
    Wang, Jiuyang
    DIGITAL SIGNAL PROCESSING, 2021, 108
  • [28] MARGIN-BASED SAMPLE FILTERING FOR IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS
    Kaplanoglou, Pantelis I.
    Diamantaras, Konstantinos
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1 - 5
  • [29] PolSAR Image Classification Based on Deep Convolutional Neural Networks Using Wavelet Transformation
    Jamali, Ali
    Mahdianpari, Masoud
    Mohammadimanesh, Fariba
    Bhattacharya, Avik
    Homayouni, Saeid
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Convolutional Fuzzy Neural Networks With Random Weights for Image Classification
    Wang, Yifan
    Ishibuchi, Hisao
    Pedrycz, Witold
    Zhu, Jihua
    Cao, Xiangyong
    Wang, Jun
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3279 - 3293