On a contact 3-structure

被引:24
作者
Kashiwada, T [1 ]
机构
[1] Saitama Coll, Dept Informat Sci, Kazo, Saitama 3470032, Japan
关键词
D O I
10.1007/s002090100279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A contact 3-structure consists of three contact metric structures which satisfy the relation (2.1). On a product manifold of the real line and a manifold with a contact 3-structure, we can construct three almost Hermitian structures satisfying the quaternionic identities. From this view point we discuss a contact 3-structure. Owing to Hitchin's well known Lemma concerning to hyperkahler structure (Lemma H), we show that a contact 3-structure is necessarily a Sasakian 3-structure.
引用
收藏
页码:829 / 832
页数:4
相关论文
共 10 条
[1]  
BOYER CP, 1994, J REINE ANGEW MATH, V455, P183
[2]  
HITCHIN NJ, 1987, P LOND MATH SOC, V55, P59
[3]  
ISHIHARA S, 1973, J DIFFER GEOM, V9, P599
[4]  
Kashiwada T, 1996, MATH APPL, V350, P225
[5]  
Kuo YY., 1970, Tohoku Math. J, V22, P325, DOI [10.2748/tmj/1178242759, DOI 10.2748/TMJ/1178242759]
[6]   THE EINSTEIN-WEYL EQUATIONS IN COMPLEX AND QUATERNIONIC GEOMETRY [J].
PEDERSEN, H ;
POON, YS ;
SWANN, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (04) :309-321
[7]  
SASAKI S, 1965, ALMOST CONTACT MAN 1
[8]   Remarks on a triple of K-contact structures [J].
Tanno, S .
TOHOKU MATHEMATICAL JOURNAL, 1996, 48 (04) :519-531
[9]  
UDRISTE C, 1969, B MATH SOC SCI MATH, V12, P487
[10]   LOCALLY CONFORMAL ALMOST KAHLER MANIFOLDS [J].
VAISMAN, I .
ISRAEL JOURNAL OF MATHEMATICS, 1976, 24 (3-4) :338-351