Random walks on linear groups satisfying a Schubert condition

被引:3
|
作者
He, Weikun [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
欧洲研究理事会;
关键词
STATIONARY MEASURES; PRODUCTS;
D O I
10.1007/s11856-020-2032-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study random walks on GL(d)(Double-struck capital R) whose proximal dimensionris larger than 1 and whose limit set in the Grassmannian Gr(r,d)(Double-struck capital R) is not contained any Schubert variety. These random walks, without being proximal, behave in many ways like proximal ones. Among other results, we establish a Holder-type regularity for the stationary measure on the Grassmannian associated to these random walks. Using this and a generalization of Bourgain's discretized projection theorem, we prove that the proximality assumption in the Bourgain-Furman-Lindenstrauss-Mozes theorem can be relaxed to this Schubert condition.
引用
收藏
页码:593 / 627
页数:35
相关论文
共 50 条
  • [21] On the pertinence to Physics of random walks induced by random dynamical systems: a survey
    Petritis, Dimitri
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [22] Multifractal Random Walks as Fractional Wiener Integrals
    Abry, Patrice
    Chainais, Pierre
    Coutin, Laure
    Pipiras, Vladas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (08) : 3825 - 3846
  • [23] Spread out random walks on homogeneous spaces
    Prohaska, Roland
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (11) : 3439 - 3473
  • [24] Large deviations for the local fluctuations of random walks
    Barral, Julien
    Loiseau, Patrick
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (10) : 2272 - 2302
  • [25] PHYSICAL MEASURES FOR NONLINEAR RANDOM WALKS ON INTERVAL
    Kleptsyn, V.
    Volk, D.
    MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (02) : 339 - 365
  • [26] Detecting Random Walks on Graphs With Heterogeneous Sensors
    Bajovic, Dragana
    Moura, Jose M. F.
    Vukobratovic, Dejan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4893 - 4914
  • [27] EXTREME VALUE THEORY FOR RANDOM WALKS ON HOMOGENEOUS SPACES
    Kirsebom, Maxim Solund
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4689 - 4717
  • [28] Limit theorems for random walks on a strip in subdiffusive regimes
    Dolgopyat, D.
    Goldsheid, I.
    NONLINEARITY, 2013, 26 (06) : 1743 - 1782
  • [29] SOME ASYMPTOTIC PROPERTIES OF RANDOM WALKS ON HOMOGENEOUS SPACES
    Benard, Timothee
    JOURNAL OF MODERN DYNAMICS, 2023, 19 : 161 - 186
  • [30] Expansion and random walks in SLd(Z/pnZ): II
    Bourgain, Jean
    Gamburd, Alex
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (05) : 1057 - 1103