Random walks on linear groups satisfying a Schubert condition

被引:3
|
作者
He, Weikun [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
欧洲研究理事会;
关键词
STATIONARY MEASURES; PRODUCTS;
D O I
10.1007/s11856-020-2032-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study random walks on GL(d)(Double-struck capital R) whose proximal dimensionris larger than 1 and whose limit set in the Grassmannian Gr(r,d)(Double-struck capital R) is not contained any Schubert variety. These random walks, without being proximal, behave in many ways like proximal ones. Among other results, we establish a Holder-type regularity for the stationary measure on the Grassmannian associated to these random walks. Using this and a generalization of Bourgain's discretized projection theorem, we prove that the proximality assumption in the Bourgain-Furman-Lindenstrauss-Mozes theorem can be relaxed to this Schubert condition.
引用
收藏
页码:593 / 627
页数:35
相关论文
共 50 条
  • [1] Recurrence and ergodicity of random walks on linear groups and on homogeneous spaces
    Guivarc'h, Y.
    Raja, C. R. E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 1313 - 1349
  • [2] LINEAR RANDOM WALKS ON THE TORUS
    He, Weikun
    De Saxce, Nicolas
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (05) : 1061 - 1133
  • [3] RATES OF CONVERGENCE IN INVARIANCE PRINCIPLES FOR RANDOM WALKS ON LINEAR GROUPS VIA MARTINGALE METHODS
    Cuny, C.
    Dedecker, J.
    Merlevede, F.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (01) : 137 - 174
  • [4] Renewal theory for random walks on surface groups
    Haissinsky, Peter
    Mathieu, Pierre
    Mueller, Sebastian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 155 - 179
  • [5] Random walks, Kleinian groups, and bifurcation currents
    Deroin, Bertrand
    Dujardin, Romain
    INVENTIONES MATHEMATICAE, 2012, 190 (01) : 57 - 118
  • [6] LARGE DEVIATION EXPANSIONS FOR THE COEFFICIENTS OF RANDOM WALKS ON THE GENERAL LINEAR GROUP
    Xiao, Hui
    Grama, Ion
    Liu, Quansheng
    ANNALS OF PROBABILITY, 2023, 51 (04) : 1380 - 1420
  • [7] Moderate deviations and local limit theorems for the coefficients of random walks on the general linear group
    Xiao, Hui
    Grama, Ion
    Liu, Quansheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 158 : 103 - 133
  • [8] RANDOM SUBGROUPS OF LINEAR GROUPS ARE FREE
    Aoun, Richard
    DUKE MATHEMATICAL JOURNAL, 2011, 160 (01) : 117 - 173
  • [9] Spectral Theorems for Random Walks on Mapping Class Groups and Out (FN)
    Dahmani, Francois
    Horbez, Camille
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (09) : 2693 - 2744
  • [10] A zero-one law for invariant measures and a local limit theorem for coefficients of random walks on the general linear group
    Grama, Ion
    Quint, Jean-Francois
    Xiao, Hui
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2321 - 2346