Hyperglycemia Induces Osteoclastogenesis and Bone Destruction Through the Activation of Ca2+/Calmodulin-Dependent Protein Kinase II

被引:18
|
作者
Shen, Yanxin [1 ,2 ,3 ]
Guo, Shujuan [1 ,2 ,3 ,4 ]
Chen, Guoqing [1 ,2 ,3 ]
Ding, Yi [1 ,2 ,4 ]
Wu, Yafei [1 ,2 ,4 ]
Tian, Weidong [1 ,2 ,3 ,5 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, State Key Lab Oral Dis, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, Chengdu 610041, Peoples R China
[3] Sichuan Univ, West China Hosp Stomatol, Natl Engn Lab Oral Regenerat Med, Chengdu 610041, Peoples R China
[4] Sichuan Univ, West China Hosp Stomatol, Dept Periodont, Chengdu 610041, Peoples R China
[5] Sichuan Univ, West China Hosp Stomatol, Dept Oral & Maxillofacial Surg, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperglycemia; Type 1 diabetes mellitus; Osteoclast; Ca2+; calmodulin-dependent protein kinase II; Bone resorption; DIABETES-MELLITUS; DEPENDENT KINASE; GLYCEMIC CONTROL; CAMKII; EXPRESSION; DIFFERENTIATION; RATS; MICROARCHITECTURE; DYSFUNCTION; MECHANISMS;
D O I
10.1007/s00223-018-0499-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Hyperglycemia induces osteoclastogenesis and bone resorption through complicated, undefined mechanisms. Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes osteoclastogenesis, and could be activated by hyperglycemia. Here, we investigated whether CaMKII is involved in hyperglycemia-induced osteoclastogenesis and subsequent bone resorption. Osteoclast formation, bone resorption, CaMKII expression and phosphorylation were measured under high glucose in vitro and in streptozotocin-induced hyperglycemia rats with or without CaMKII inhibitor KN93. The results showed that 25mmol/L high glucose in vitro promoted cathepsin K and tartrate-resistant acid phosphatase expression (p<0.05) and osteoclast formation (p<0.01) associated with enhancing isoform expression (p<0.05) and CaMKII phosphorylation (p<0.001). Hyperglycemia promoted the formation of osteoclasts and resorption of trabecular and alveolar bone, and inhibited sizes of femur and mandible associated with enhanced CaMKII phosphorylation (p<0.001) in rats. All these changes could be alleviated by KN93. These findings imply that CaMKII participates not only in hyperglycemia-induced osteoclastogenesis and subsequent bone resorption, but also in the hyperglycemia-induced developmental inhibition of bone.
引用
收藏
页码:390 / 401
页数:12
相关论文
共 50 条
  • [1] Hyperglycemia Induces Osteoclastogenesis and Bone Destruction Through the Activation of Ca2+/Calmodulin-Dependent Protein Kinase II
    Yanxin Shen
    Shujuan Guo
    Guoqing Chen
    Yi Ding
    Yafei Wu
    Weidong Tian
    Calcified Tissue International, 2019, 104 : 390 - 401
  • [2] Phosphorylation and activation of Ca2+/calmodulin-dependent protein kinase phosphatase by Ca2+/calmodulin-dependent protein kinase II
    Kameshita, I
    Ishida, A
    Fujisawa, H
    FEBS LETTERS, 1999, 456 (02) : 249 - 252
  • [3] Effects of Ca2+/calmodulin-dependent protein kinase pathway inhibitor KN93 on osteoclastogenesis
    Fu, Yingxiao
    Niu, Dequn
    Su, Wenfang
    Yang, Qingling
    Wang, Wenrui
    Tang, Baoding
    Li, Zhongwen
    Zhang, Ding
    Mao, Yingji
    Li, Chuang
    Li, Xue
    Ye, Shihao
    Su, Xu
    Xu, Fanyuan
    Sun, Xuemin
    Chen, Changjie
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 42 (04) : 2294 - 2302
  • [4] The functions of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in diabetes progression
    Benchoula, Khaled
    Mediani, Ahmed
    Hwa, Wong Eng
    JOURNAL OF CELL COMMUNICATION AND SIGNALING, 2023, 17 (01) : 25 - 34
  • [5] Oxidative activation of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates vascular smooth muscle migration and apoptosis
    Zhu, Linda J.
    Klutho, Paula J.
    Scott, Jason A.
    Xie, Litao
    Luczak, Elizabeth D.
    Dibbern, Megan E.
    Prasad, Anand M.
    Jaffer, Omar A.
    Venema, Ashlee N.
    Nguyen, Emily K.
    Guan, Xiaoqun
    Anderson, Mark E.
    Grumbach, Isabella M.
    VASCULAR PHARMACOLOGY, 2014, 60 (02) : 75 - 83
  • [6] Mechanisms of Activation and Subunit Release in Ca2+/Calmodulin-Dependent Protein Kinase II
    Pullara, Filippo
    Asciutto, Eliana K.
    General, Ignacio J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (45) : 10344 - 10352
  • [7] Ca2+ calmodulin-dependent protein kinase II activation and regulation of adrenal glomerulosa Ca2+ signaling
    Fern, RJ
    Hahm, MS
    Lu, HK
    Liu, LP
    Gorelick, FS
    Barrett, PQ
    AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1995, 269 (06) : F751 - F760
  • [8] Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) in the Heart
    Maier, Lars S.
    CALCIUM SIGNALING, 2012, 740 : 685 - 702
  • [9] Oligomerization of Ca2+/calmodulin-dependent protein kinase kinase
    Fukumoto, Yusei
    Harada, Yuhei
    Ohtsuka, Satomi
    Kanayama, Naoki
    Magari, Masaki
    Hatano, Naoya
    Sakagami, Hiroyuki
    Tokumitsu, Hiroshi
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 587 : 160 - 165
  • [10] Activation of Ca2+/calmodulin-dependent protein kinase II α in the spinal cords of rats with clip compression injury
    Song, Myoung-Sub
    Seo, Heung-Sik
    Yang, Miyoung
    Kim, Joong-Sun
    Kim, Sung-Ho
    Kim, Jong-Choon
    Wang, Hongbing
    Sim, Ki-Bum
    Kim, Heechul
    Shin, Taekyun
    Moon, Chanjong
    BRAIN RESEARCH, 2009, 1271 : 114 - 120