New Fixed Point Theorem for Discontinuous Operators in Cones and Applications

被引:2
作者
Rodriguez-Lopez, Jorge [1 ]
机构
[1] Univ Santiago de Compostela, Dept Estat Analise Matemat & Optimizac, Dept Estat, Fac Matemat, Campus Vida, Santiago 15782, Spain
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2020年 / 39卷 / 02期
关键词
Fixed point index theory; Krasnosel'skii theorem; discontinuous differential equations; fourth order problem; EXISTENCE; MAPPINGS;
D O I
10.4171/ZAA/1654
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide new fixed point theorems for a class of discontinuous operators by combining a new fixed point theorem of compression-expansion type for these discontinuous operators with monotone iterative methods. As an application we study the existence of positive solutions for a nonlinear fourth-order discontinuous boundary value problem.
引用
收藏
页码:131 / 150
页数:20
相关论文
共 22 条
  • [1] Bonanno G, 2017, DIFFER INTEGRAL EQU, V30, P273
  • [2] Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    [J]. BOUNDARY VALUE PROBLEMS, 2009,
  • [3] Positivity and lower and upper solutions for fourth order boundary value problems
    Cabada, Alberto
    Angel Cid, J.
    Sanchez, Luis
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (05) : 1599 - 1612
  • [4] Constant sign solution for a simply supported beam equation
    Cabada, Alberto
    Saavedra, Lorena
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (59) : 1 - 17
  • [5] A positive fixed point theorem with applications to systems of Hammerstein integral equations
    Cabada, Alberto
    Angel Cid, Jose
    Infante, Gennaro
    [J]. BOUNDARY VALUE PROBLEMS, 2014, : 1 - 10
  • [6] New criteria for the existence of non-trivial fixed points in cones
    Cabada, Alberto
    Angel Cid, Jose
    Infante, Gennaro
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [7] Existence of a non-zero fixed point for nondecreasing operators proved via Krasnoselskii's fixed point theorem
    Cabada, Alberto
    Angel Cid, Jose
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 2114 - 2118
  • [8] Positive fixed points and fourth-order equations
    Cid, J. A.
    Franco, D.
    Minhos, F.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 72 - 78
  • [9] Positive and negative solutions of one-dimensional beam equation
    Drabek, Pavel
    Holubova, Gabriela
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 51 : 1 - 7
  • [10] Figueroa R., FIXED POINT THEORY