A Comparison of Different U-Net Models for Segmentation of Overlapping Organoids

被引:0
|
作者
Haja, Asmaa [1 ]
Radu, Stefania [2 ]
Schomaker, Lambert [1 ]
机构
[1] Univ Groningen, Bernoulli Inst, Groningen, Netherlands
[2] Univ Groningen, Groningen, Netherlands
来源
2022 9TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2022 | 2022年
关键词
Deep learning; Segmentation; Imbalanced classes; Organoids;
D O I
10.1145/3574198.3574199
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The interest in automatically analyzing biomedical images increased in the past years, as an accurate localization and segmentation of organoids can help with the early detection of malignancies and predict diseases, such as cancer. The morphometric appearances of these images and the high level of overlapping in the organoids make the segmentation task challenging. This paper studies a simple U-Net and also proposes a double U-Net model with a shared encoder and two decoders, one for binary segmentation of the mask and one for the multi-class segmentation of overlaps. A significant addition to the U-Net is the residual-atrous skip connections, which reduce the semantic gap between the encoder and the decoder. The issue of high imbalance between the classes is addressed using a combination between Focal Loss and Focal Tversky Loss, which significantly improved the performance of the model. Ten networks were trained on more than 20,000 crop images with overlapping and non-overlapping organoids and obtained promising results. When tested on 88 new images, the final models achieved an F1 score of 0.83 for the mask channel and 0.43 for the overlapping channel. The Jaccard Index was 0.72 for the mask and 0.34 for the overlap. To the authors' knowledge, there exists no work in the literature that explores the detection and segmentation of overlapping objects in biomedical images, especially segmenting overlapping organoids, which also shows the novelty of this work.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] Dual U-Net for the Segmentation of Overlapping Glioma Nuclei
    Li, Xieli
    Wang, Yuanyuan
    Tang, Qisheng
    Fan, Zhen
    Yu, Jinhua
    IEEE ACCESS, 2019, 7 : 84040 - 84052
  • [2] Histopathological Image Segmentation Using U-Net Based Models
    Hatipoglu, Nuh
    Bilgin, Gokhan
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [3] Breast tumor segmentation in ultrasound images: comparing U-net and U-net + +
    de Oliveira, Carlos Eduardo Gonçalves
    Vieira, Sílvio Leão
    Paranaiba, Caio Felipe Brito
    Itikawa, Emerson Nobuyuki
    Research on Biomedical Engineering, 2025, 41 (01)
  • [4] A Comparison of U-Net Series for Teeth Segmentation in CBCT images
    Zhang, Fan
    Zheng, Linya
    Lin, Chen
    Huang, Liping
    Bai, Yuming
    Chen, Yinran
    Luo, Xiongbiao
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [5] Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images
    Woo, Boyeong
    Lee, Myungeun
    2021 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2021,
  • [6] Overlapping Chromosome Segmentation using U-Net: Convolutional Networks with Test Time Augmentation
    Saleh, Hariyanti Mohd
    Saad, Nor Hidayah
    Isa, Nor Ashidi Mat
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 524 - 533
  • [7] Segmentation of roots in soil with U-Net
    Smith, Abraham George
    Petersen, Jens
    Selvan, Raghavendra
    Rasmussen, Camilla Ruo
    PLANT METHODS, 2020, 16 (01)
  • [8] Segmentation of roots in soil with U-Net
    Abraham George Smith
    Jens Petersen
    Raghavendra Selvan
    Camilla Ruø Rasmussen
    Plant Methods, 16
  • [9] Improved Segmentation by Adversarial U-Net
    Sriker, David
    Cohen, Dana
    Cahan, Noa
    Greenspan, Hayit
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [10] Sharp dense U-Net: an enhanced dense U-Net architecture for nucleus segmentation
    Senapati, Pradip
    Basu, Anusua
    Deb, Mainak
    Dhal, Krishna Gopal
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (06) : 2079 - 2094