A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity

被引:10
|
作者
Lee, Kookjin [1 ,2 ]
Elman, Howard C. [1 ,3 ]
Sousedik, Bedrich [4 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] Sandia Natl Labs, Extreme Scale Data Sci & Analyt Dept, Livermore, CA 94550 USA
[3] Univ Maryland, Inst Adv Comp Studies, College Pk, MD 20742 USA
[4] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2019年 / 7卷 / 04期
基金
美国国家科学基金会;
关键词
stochastic Galerkin method; Navier-Stokes equations; low-rank approximation; ITERATIVE SOLVERS; POLYNOMIAL CHAOS; DECOMPOSITION; ALGORITHM;
D O I
10.1137/17M1151912
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an iterative low-rank approximation method for the solution of the steady-state stochastic Navier-Stokes equations with uncertain viscosity. The method is based on linearization schemes using Picard and Newton iterations and stochastic finite element discretizations of the linearized problems. For computing the low-rank approximate solution, we adapt the nonlinear iterations to an inexact and low-rank variant, where the solution of the linear system at each nonlinear step is approximated by a quantity of low rank. This is achieved by using a tensor variant of the GMRES method as a solver for the linear systems. We explore the inexact low-rank nonlinear iteration with a set of benchmark problems, using a model of flow over an obstacle, under various configurations characterizing the statistical features of the uncertain viscosity, and we demonstrate its effectiveness by extensive numerical experiments.
引用
收藏
页码:1275 / 1300
页数:26
相关论文
共 50 条
  • [41] The Stokes and Navier-Stokes equations in an aperture domain
    Kubo, Takayuki
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) : 837 - 859
  • [42] Highly parallel computing of a multigrid solver for 3D Navier-Stokes equations
    Bruneau, Charles-Henri
    Khadra, Khodor
    JOURNAL OF COMPUTATIONAL SCIENCE, 2016, 17 : 35 - 46
  • [43] Low-Mach-number asymptotics of the Navier-Stokes equations
    Muller, B
    JOURNAL OF ENGINEERING MATHEMATICS, 1998, 34 (1-2) : 97 - 109
  • [44] Low-Mach-Number Asymptotics of the Navier-Stokes Equations
    Bernhard Müller
    Journal of Engineering Mathematics, 1998, 34 : 97 - 109
  • [45] VANISHING VISCOSITY LIMIT OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH GENERAL PRESSURE LAW
    Schrecker, Matthew R., I
    Schulz, Simon
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2168 - 2205
  • [46] Optimal decay rates on compressible Navier-Stokes equations with degenerate viscosity and vacuum
    Hong, Guangyi
    Zhu, Changjiang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 124 : 1 - 29
  • [47] Pullback dynamics of 3D Navier-Stokes equations with nonlinear viscosity
    Yang, Xin-Guang
    Feng, Baowei
    Wang, Shubin
    Lu, Yongjin
    Ma, To Fu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 48 : 337 - 361
  • [48] AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY
    Camano, Jessika
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Tierra, Giordano
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 1069 - 1092
  • [49] Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity
    Liu, Chun
    Walkington, Noel J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1287 - 1304
  • [50] On augmented finite element formulations for the Navier-Stokes equations with vorticity and variable viscosity
    Anaya, Veronica
    Caraballo, Ruben
    Ruiz-Baier, Ricardo
    Torres, Hector
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 143 : 397 - 416